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Abstract

This paper rephrases the Minesweeper problem in terms of information
theory and entropy optimization, allowing greater flexibility in applications
and a simplified algorithm. The goal is to find the most probable distribution
of mine locations, given the information that is currently available. All
information must be taken into account and no additional information not
given may be used. The solution is optimal in the context of information
theory.

1 Introduction

Minesweeper is a popular logic game where a set of hidden
mines are placed across a two dimensional grid. A player
takes turns selecting squares trying to deduce the location
of all the mines without accidently selecting a mine itself
which ends the game. Each square can either be: (1)
empty - revealing any connected empty squares, (2) a
number - representing how many mines are adjacent to
that square, (3) a mine - ending the game. The player can
place flags on any number of squares they believe contain
mines. The game is won when all non-mine squares have
been revealed. An example of an easy level game in
mid-play is shown to the right, with six out of the ten
hidden mines being able to be determined with certainty at current play. (Hint:
top left unselected square is one mine). Flags can be placed on those squares to
remind the player where they believe the mines are located - the flags can be
removed or changed at any time if prior reasoning may be incorrect.

Many academic papers have been written about Minesweeper, its properties,
and algorithms on how to play; including a full website dedicated to collecting
those references [1]. The papers include algorithms such as Boolean Satisfiability
Problem, combinatorial reasoning, cellular automaton, genetic programming,
graph theory, neural networks, and the use of quantum logic gates to name a
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few. All with varying degrees of complexity and application versus theory. It is
known that Minesweeper is NP-Complete.

This paper rephrases the Minesweeper problem in terms of information
theory and entropy optimization, allowing greater flexibility in applications and
a simplified algorithm. The goal is to find the most probable distribution of mine
locations, given the information that is currently available. All information must
be taken into account and no additional information not given may be used. The
solution is optimal in the context of information theory.

2 Algorithm

Let H(X) = −
∑n

i=1 pi log2 pi represent the Shannon entropy of some discrete
probability distribution with

∑n
i=1 pi = 1 [2]. According to Jaynes, the probability

distribution which best represents the current state of knowledge about a system
is the one with largest entropy [3]. If the constraints are given in the form
of expected values then Jaynes’ principle of maximum entropy is the uniquely
correct method for inductive inference and maximizing any function but entropy
will lead to inconsistency [4]. Any other distribution, other than the maximum
entropy distribution, would contain additional information or assumptions not
given to us which may or may not be correct.

Let pi represent the probability the ith square contains a mine, with pi = 1
being certain a mine is present. For example, the game board above has six
squares in which pi = 1 can be deduced by logical reasoning alone. Alternatively,
some other squares can also be determined to be clear of any mines, in which
case pi = 0. Any other scenario the square is in some uncertain region where the
likelihood it contains a mine is determined by the information given by the game,
but cannot be logically deduced as certain one way or another. The principle of
maximum entropy can be used to determine the most probable distribution of
mine locations consistent with the given board. The displayed counts of mines
turn into expected value constraints across the probabilities.

Notation: Let i = {1, . . . , n} represent the n unselected squares in some
user-defined order. Let j = {0, . . . ,m} represent the m + 1 constraints on the
mine locations. These include the zeroth constraint of total number of mines
across all global unselected squares, as well as the m numbers shown yielding
local information. The zeroth constraint can be ignored if total number of mines
is unknown or not given. For each j there is a set, Ωj , which are the relevant
indices of i that contribute to mine count shown in number cj .

Consider the near-trivial game to the left, used for
illustration purposes. There are m = 3 revealed numbers,
with values c = {1, 2, 3}, along with c0 = 3 representing the
three hidden mines (not labeled). Let the order of the n = 6
unselected squares go from left to right, top to bottom. Then,
for example, for j = 2 we have c2 = 2 and Ω2 = {1, 2, 3}
representing the constraint p1 + p2 + p3 = 2. The m + 1
constraints are

∑
i∈Ωj

pi = cj for j = {0, . . . ,m}.
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As each square individually can be considered a Bernoulli random variable of
probability of being a mine, the correct optimization is the sum of Shannon
entropies across the n Bernoulli distributions as a collective. As all unselected
squares are equal in importance, the total entropy to be optimized is the
unweighted sum of the individual Bernoulli distribution entropies. Let Hb(p) =
−p log2(p)− (1− p) log2(1− p) represent the binary entropy function. Then,

max
p

n∑
i=1

Hb(pi)

s.t.
∑
i∈Ωj

pi = cj j = {0, . . . ,m}
(1)

is the proper optimization collectively across the n Bernoulli distributions
subject to the m+1 constraints. This can be solved using standard optimization
solvers, such as gradient descent. However, for this particular problem a simpler
algorithm is possible. By relabelling the complementary probability 1− pi as a
new variable qi, along with additional constraint pi+ qi = 1, the binary entropy
function is now the sum of two singular Shannon entropy terms,

max
p,q

n∑
i=1

(−pi log2(pi)) + (−qi log2(qi))

s.t.
∑
i∈Ωj

pi = cj j = {0, . . . ,m}

∑
i∈Ωj

qi = |Ωj | − cj j = {0, . . . ,m}

pi + qi = 1 i = {1, . . . , n}

(2)

The inclusion of newly additional m + 1 constraints on qi’s represent the
complementary constraint for each j. For example, if out of 8 unselected squares
there are 3 known mines, then the sum of qi’s would represent the constraint of
how many squares are not mines, in this case 5. At first this seems to complicate
the problem, going from n unknowns and m + 1 constraints to 2n unknowns
and 2(m + 1) + n constraints. However, in this formulation the optimization
is the sum of individual Shannon entropy terms with linear constraints being
subsets of inclusion or exclusion for each probability, all coefficients being zero
or one. This means a simplified version of generalized iterative scaling [5] can
be used, with slight extension for the constraints going simultaneously across n
probability distributions, {pi, qi} for i = {1, . . . , n}.

This yields the relatively simple algorithm below, using only proportional
fitting and basic arithmetic operations.
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Minesweeper - Entropy optimization
For each j = {0, . . . ,m} of known constraints on number of mines and location,
let cj be the number of mines indicated and Ωj be the set of i = {1, . . . , n}
unselected squares relevant to constraint j.
Initialize
— {pi, qi} ← {1, 1} for i = {1, . . . , n}
Iterate until convergence
— For j = {0, . . . ,m}
— — If

∑
i∈Ωj

pi ̸= cj

— — — pi ← pi

(
cj∑

i∈Ωj
pi

)
for i ∈ Ωj

— — If
∑

i∈Ωj
qi ̸= |Ωj | − cj

— — — qi ← qi

(
|Ωj |−cj∑

i∈Ωj
qi

)
for i ∈ Ωj

— {pi, qi} ← {pi, qi}/(pi + qi) for i = {1, . . . , n}
return {pi, qi}

In words the algorithm is quite simple: First initialize all pairs {pi, qi} to
one. Then for each constraint if the sum of the corresponding probabilities
is a multiplicative factor off from the known given number, multiply all the
corresponding probabilities by that same factor so it now matches the given sum.
This is true for pi’s with number of mines and qi’s with number of non-mines.
Once all constraints have been updated, re-normalize each pair of probabilities
and repeat until convergence.

The convergence criteria is up to the user, as machine-precision may not be
necessary. It could be until third decimal place doesn’t change, or until the set
of unselected squares with matching lowest probability doesn’t change - in that
case it is the set of safest squares that can be played which is of importance
and not necessarily their probability. Any square given pi = 1 can be flagged
immediately and any set of squares with pi = 0 is certain to be free of mines.

The output {pi, qi} is identical to the maximum entropy solution and contains
all information across the constraints without imposing any other assumption.
The squares with the lowest p, or highest q, should be selected for next turn.

As an example, the output of the algorithm for the
following puzzle is
p = {0.5, 1, 0.5, 0.333, 0.333, 0.333}
q = {0.5, 0, 0.5, 0.666, 0.666, 0.666}
There is a 100% certainty the second unselected square
(under the blue 1) is a mine, with 33% chance of the
bottom three. The second square should be flagged as
being a mine, and one of the bottom three selected for
next turn with q = 0.666 probability being safe.
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3 Combinatorics

The rationale behind the optimzation and algorithm can also be explained
differently using the combinatorial argument of Wallis to Jaynes [6].

Consider using discrete fully intact indivisible mines. The full-mines are
randomly placed in the unselected squares and any combination not consistent
with the numbers shown on the board are ignored. Among the valid placements
some assignments will have a higher number of ways of randomly being allocated
than others, their combinatorial multiplicity.

Next consider the mines being divisible, in this case half-mines. Twice
as many half mines are randomly placed, with maximum two half-mines per
square, and those assignments consistent with the board are kept. Some valid
assignments will have higher multiplicities than others. Continue dividing the
mines into thirds, fourths, etc. repeating the random assignments and keeping
track of those consistent with the board constraints. In the limit the mines
are infinitely divisible and we have reached the continuum. The most probable
result is the one which maximizes the multiplicity in that limit. Instead of
maximizing the multiplicity directly a monotonic function is maximized, the
Shannon entropy. This is equivalent to Jaynes’ principle of maximum entropy.

4 Conclusion

In this paper we present a new algorithm for Minesweeper which in its simplicity
solves for the maximum entropy solution consistent with all constraints given
on the board. In terms of information theory it solves for the most probable
distribution of mine locations. The algorithm is general to go beyond two
dimensional grids, and is also applicable to variants such as non-rectangular,
3D, Hexagonal, or Triangular to name a few.

While other procedures exists which solve the entropy optimization problem
faster, the algorithm presented here is the easiest to program and understand.
Even for expert level of Minesweeper with 99 mines across a board of dimensions
16 x 30, the iteration to convergence should be short in time.
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