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Abstract

We use the computer game of Minesweeper to illustrate few model-
ing tricks utilized when applying Bayesian network (BN) models in real
applications. Among others, we apply rank-one decomposition (ROD) to
conditional probability tables (CPTs) representing addition. Typically,
this transformation helps to reduce the computational complexity of prob-
abilistic inference with the BN model. However, in this paper we will see
that (except for the total sum node) when ROD is applied to the whole
CPT it does not bring any savings for the BN model of Minesweeper.
Actually, in order to gain from ROD we need minimal rank-one decom-
positions of CPTs when the state of the dependent variable is observed.
But this is not known and it is a topic for our future research.

1 Introduction

The game of Minesweeper is a one-player grid game. It is bundled with several
computer operating systems, e.g., with Windows or with the KDE desktop
environment. The game starts with a grid of n × m blank fields. During the
game the player clicks on different fields. If the player clicks on a field containing
a mine then the game is over. Otherwise the player gets information on how
many fields in the neighborhood of the selected field contain a mine. The goal of
the game is to discover all mines without clicking on any of them. In Figure 1 we
present two screenshots from the game. For more information on Minesweeper
see, e.g., Wikipedia [12].

∗J. Vomlel was supported by grants number 1M0572 and 2C06019 (MŠMT ČR),
ICC/08/E010 (Eurocores LogICCC), and 201/09/1891 (GA ČR).
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Figure 1: Two screenshots from the game of Minesweeper. The screenshot on
the right hand side is taken after the player stepped on a mine. It shows the
actual position of mines .

Bayesian networks (BNs) [8, 5, 4] are probabilistic graphical models that use
acyclic directed graphs (DAGs) G = (V,E) to encode conditional independence
relations among random variables associated with the nodes of the graph. The
quantitative part of a BN are conditional probability tables (CPTs) P (Xi |
pa(Xi)), i ∈ V that define together the joint probability distribution represented
by the BN as the product

P (Xi, i ∈ V ) =
∏
i∈V

P (Xi|pa(Xi)) . (1)

In many real applications the CPTs have a special local structure that can be
further exploited to gain even more efficient inference. Examples of such CPTs
are CPTs representing functional (i.e. deterministic) dependence or CPTs repre-
senting noisy functional dependence: noisy-or, noisy-and, noisy-max, noisy-min,
etc. A method that allows to use the local structure within standard inference
techniques (such as [6, 3]) is the rank-one decomposition of CPTs [2, 11, 10].
A typical task solved by BNs is the computation of conditional probabilities
given an evidence inserted in the model. In the game of Minesweeper the player
is interested in the probabilities of a mine at all fields of the grid given the
observations she has made.

The reader may ask why for solving this deterministic game we use BNs
instead of the standard techniques of constraint processing. The reason is that
we aim at more general problems that correspond to real applications. An
advantage of BN models is that they can also represent uncertainty in the mod-
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eled domain. This can, for example, model situations when the observations or
measurements are noisy. In the game of Minesweeper the observations are the
presence or absence of mines. For example, we can extend the BN model of
Minesweeper so that the influence of mines from the neighboring fields on the
observed count is noisy (i.e. non-deterministic).

2 A Bayesian network model for Minesweeper

Assume a game of Minesweeper on a n×m grid. The BN model of Minesweeper
contains two variables for each field (i, j) ∈ {1, . . . , n} × {1, . . . ,m} on the
game grid. The variables in the first set X = {X1,1, . . . , Xn,m} are binary and
correspond to the (originally unknown) state of each field of the game grid. They
have state 1 if there is a mine on this field and state 0 otherwise. The variables
in the second set Y = {Y1,1, . . . , Yn,m} are observations made during the game.
Each variables Yi,j has as its parents1 from X that are on the neighboring
positions in the grid, i.e.

pa(Yi,j) =
{
Xk,` ∈ X : k ∈ {i− 1, i, i+ 1}, ` ∈ {j − 1, j, j + 1},
(k, l) 6= (i, j), 1 ≤ k ≤ n, 1 ≤ ` ≤ m

}
.

The variables from Y provide the number of neighbors with a mine. Therefore
their number of states is the number of their parents plus one. Their CPTs are
defined by the addition function for all combinations of states x of pa(Yi,j) and
states y of Yi,j as

P (Yi,j = y | pa(Yi,j) = x) =
{

1 if y =
∑

x∈x x
0 otherwise. (2)

Whenever an observation of Yi,j is made the variable Xi,j can be removed
from the BN since its state is known. If its state is 1 the game is over, otherwise
it is 0 and the player cannot click on the same field again. When evidence from
an observation is distributed to its neighbors also the node corresponding to the
observation can be removed from the DAG.

In addition, we need not include into the BN model observations Yi,j that
were not observed yet. In order to compute a marginal probability of a variable
Xi,j we sum the probability values of the joint probability distribution over all
combinations of states of remaining variables. It holds for all combinations of
states x of pa(Yi,j) that∑

y

P (Yk,l = y | pa(Yi,j) = x) = 1

therefore the CPT of Yi,j can be omitted from the joint probability distribution
represented by the BN.

1Since there is a one-to-one mapping between nodes of the DAG of a BN and the variables
of BN we will use the graph notion also when speaking about random variables.
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The above considerations implies that in every moment of the game we
will have at most one node for each field (i, j) of the grid. Each node of a
graph corresponding to a grid position (i, j) will be indexed by a unique number
g = j + (i− 1) ·m.

3 A standard approach for inference in BNs

In a standard inference technique such as [6] or [3] the DAG of the BN is
transformed to an undirected graph so that each subgraph of the DAG of a BN
induced by set variable Y and its parents, say {X1, . . . , Xm}, is replaced by the
complete undirected graph on {Y,X1, . . . , Xm}. This step is called moralization.
See Figure 2.

Y

X1 X2 Xm X2 Xm

Y

X1

Figure 2: The original subgraph of the DAG induced by {Y,X1, . . . , Xm} and
its counterpart after moralization.

The second graph transformation is triangulation of the moral graph. An
undirected graph is triangulated if it does not contain an induced subgraph that
is a cycle without a chord of a length of at least four. A set of nodes C ⊆ V of
a graph G = (V,E) is a clique if it induces a complete subgraph of G and it is
not a subset of the set of nodes in any larger complete subgraph of G.

An important parameter for the inference efficiency is the total table size
after triangulation. The table size of a clique C in an undirected graph is∏

i∈C |Xi|, where |Xi| is the number of states of a variable Xi corresponding
to a node i. The total table size (tts) of a triangulation is defined as the sum
of table sizes for all cliques of the triangulated graph. Therefore, it is desirable
to find a triangulation of the original graph having the total table size as small
as possible. Since this problem is known to be NP-hard different heuristics are
often used. In this paper we use minweight heuristics [7] (called H1 in [1]),
which, in case of binary variables, is equivalent to the minwidth heuristics [9].

See Figure 3 for an example of the triangulated moral graph for the standard
method after twenty observations in the game of Minesweeper on a 10×10 grid.
During the triangulation we added five edges only. This is a typical behavior
unless we get long cycles in the moral graph.
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Figure 3: An example of the triangulated moral graph of the BN after twenty
observations in the game of Minesweeper on a 10 × 10 grid for the standard
method.

4 Rank-one decomposition of tables represent-
ing addition

In the BN model of Minesweeper the CPTs have a special local structure (they
correspond to addition). Therefore, we can transform the CPTs using tensor
rank-one decomposition (ROD) [2, 11, 10]. A minimal ROD of CPTs repre-
senting addition was proposed in [10].

Assume that X1, . . . , Xm are parents of Y , and CPT P (Y | X1, . . . , Xm)
represents addition and is defined as in formula (2). Then using Theorem 3
from [10] we can write

P (Y = y | X1 = x1, . . . , Xm = xm) =
m∑

b=0

ξb(y) ·
m∏

i=1

ϕi,b(xi) , (3)

where for b = 0, . . . ,m

• ξb are real valued functions defined for states {0, 1, . . . ,m} of Y and

• for i = 1, . . . ,m ϕi,b are real valued functions defined for states {0, 1} of
Xi.

This decomposition is called rank-one decomposition (ROD) of addition. In
graphical terms it means that each subgraph of the DAG of a BN induced by set
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{Y,X1, . . . , Xm} is replaced by an undirected graph containing one additional
variable B that is connected by an undirected edge with all variables from
{Y,X1, . . . , Xm}, see Figure 4. The minimum number of states of B that allows
to write a table in the form of equation (3) is called the rank of the table. In
case of CPT for addition the rank is m + 1, which means we cannot do this
decomposition with less than m+ 1 states of B.

Y

X1 X2 Xm

Y

X1 X2 Xm

B

Figure 4: The original subgraph of the DAG induced by {Y,X1, . . . , Xm} and
its counterpart after ROD.

In our current approach we use only a part of table ξb corresponding to
the observed state y. This implies we can eliminate node corresponding to the
variable Y from the graph, so that there is only one node in the graph (i.e, node
corresponding to varible B) for the corresponding field of the grid.

The second graph transformation is again triangulation, but this time ap-
plied to the undirected graph after ROD.

See Figure 5 for an example of the graph for the model after ROD and
after twenty observations in the game of Minesweeper on a 10× 10 grid. Note,
that while for variables corresponding to unobserved fields of the game grid the
number of states is two, for the variables corresponding to the observed fields
of the game grid the number of states is typically higher (up to eight states)
in the model after ROD. However, there are fewer edges than in the standard
approach but during triangulation we added 73 edges, which is much more than
for the triangulated moral graph produced by the standard approach. For the
triangulated graph of the graph from Figure 5 see Figure 6.

During the computations with the model after ROD we decrease the num-
ber of states of observed nodes Yi,j and of corresponding Bi,j by one for each
observed parent and modify the CPT accordingly. At the same time we delete
edges from parents with evidence to observed nodes.

The node for the total number of mines in the game

Typically, in the game of Minesweeper the total number of mines z is known in
advance. If we want to exploit this information we need to extend the model
by one auxiliary node Z that will impose this constraint. This node has the
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Figure 5: An example of the graph of the BN after ROD and after the same
twenty observations as in Figure 3 in the game of Minesweeper on a 10 × 10
grid.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

31
32

33
34

35
36

37
38

39
40

41
42

43
44

45
46

47
48

49
50

51
52

53
54

55
56

57
58

59
60

61
62

63
64

65
66

67
68

69
70

71
72

73
74

75
76

77
78

79
80

81
82

83
84

85
86

87
88

89
90

91
92

93
94

95
96

97
98

99
100

Figure 6: Triangulated graph of the graph from Figure 5.
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number of states equal to the total number of fields on the game grid plus one,
which is n ·m + 1. It has all binary nodes from the set X = {X1,1, . . . , Xn,m}
as its parents and we enter the evidence Z = z in the BN model.

If we used the standard approach described in Section 3 for node Z we would
get a complete graph over all nodes from X . This would make the BN model of
the game intractable for larger values of n ·m.

However, since we use ROD for node Z we connect it with all nodes from X
but we do not require nodes from X to be pairwise connected. The total table
size of the BN with node Z after ROD is n ·m larger than the total table size
of the BN without node Z. Since this is a constant for a fixed grid we do all
experiments without the auxiliary Z node.

5 Experiments

We performed the experiments with the game of Minesweeper for two different
grid sizes 10×10 and 20×20. For simplicity we used a random selection of fields
to be played and we assumed we never hit the mine during the game. Of course,
this is an unrealistic assumption, but since we are interested in the complexity
of inference in the BN models it suffices to get an upper bound on the worst case
computational complexity. For the results of experiments see Figures 7 and 8,
where each value is the average over twenty different games.

0 20 40 60 80 100

1
2

3
4

the number of observations

lo
g1

0(
tts

)

rank one decomposition
the standard technique

Figure 7: The development of the total table size (tts) for the ROD and standard
methods during the game of Minesweeper on the 10× 10 grid.

From the results of experiments we can see that the ROD as it is currently
applied does not bring any advantages of the standard method. But, recall that
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Figure 8: The development of the total table size (tts) for the ROD and standard
methods during the game of Minesweeper on the 20× 20 grid.

ROD is very useful for the auxiliary node Z, which stands for the total number
of mines.

However, the way we apply ROD in Section 4 is not the most efficient utiliza-
tion of ROD. Given a state y of Y we could find more compact factorizations of
P (Y = y | X1, . . . , Xm). For example in two extreme cases, if y = m or y = 0 we
know that the state of all Xi, i = 1, . . . ,m is 1 or 0, respectively. Consequently,
the rank of P (Y = y | X1, . . . , Xm) for y = 0,m is one. However, we do not
know the rank and minimal rank-one decompositions of P (Y = y | X1, . . . , Xm)
for other values of y. This is a topic for our future research. We conjecture
that for most values of y the rank of P (Y = y | X1, . . . , Xm) will be lower than
m+ 1, which will lessen the total table size for the ROD method.

6 Conclusions

In this paper we report experiments with Bayesian networks build for the game
of Minesweeper. During the construction of BN we use several modeling tricks
that allow more efficient inference in the BNs for this game. We compare the
computational complexity of the inference in the BN model for the standard
approach and after the rank-one decomposition. We observed that there are no
significant differences in the computational complexity of the two approaches.
Probably, the most important theoretical observation is that we miss minimal
rank-one decompositions for the CPTs with a local structure when the state
of the child variable is observed. We believe this would help to reduce the
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computational complexity with the BN model after ROD. This is an issue for
our future research.
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