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Abstract. Many reactive planning tasks are tackled by optimization
combined with shrinking horizon at each time step: the problem is sim-
plified to a non-reactive (myopic) optimization problem, based on the
available information at the current time step and an estimate of future
behavior, then it is solved; and the simplified problem is updated at each
time step thanks to new information. This is in particular suitable when
fast off-the-shelf components are available for the simplified problem -
optimality stricto sensu is not possible, but good results are obtained
at a reasonnable computational cost for highly untractable problems. As
machines get more powerful, it makes sense however to go beyond the
inherent limitations of this approach. Yet, a brute-force solving of the
complete problem is often impossible; we here propose a methodology
for embedding a solver inside a consistent reactive planning solver.
Our methodology consists in embedding the solver in an Upper-
Confidence-Tree algorithm, both in the nodes and as a Monte-Carlo
simulator. We show the mathematical consistency of the approach, and
then we apply it to a classical success of the myopic approach: the
MineSweeper game.

1 Introduction

Solving a reactive planning problem is a very hard task; e.g. playing optimally at
the MineSweeper game is very hard, and planning power plants maintenances[19]
is usually done in a similar approximate manner: a move is decided based on
current knowledge, with no tree search. This is quite reasonnable as too many
uncertainties make tree search unreliable; however, it makes sense to look for
the best of both worlds. As computers get stronger and stronger, it makes sense
to work on the “real” problem using the approximate model as a preliminary
guide. For this, and following [20, 21] (combining heuristics with Upper Confi-
dence Tree), we propose Upper Confidence Tree (UCT) combined with solvers,
for progressively boosting a fast solver (constraint satisfaction problems) to an
optimal behavior.

UCT is well known for its ability to work on problems with no or almost
no expert information; in particular, it does not need any evaluation function.
But is quite convenient for using prior knowledge encoded in heuristic strategies.



These heuristic strategies can be used both in the tree part of the algorithm or
in the leaf evaluation; in particular, in the leaf evaluation, it takes into account
long-term effects by simulating complete runs (as in TD(1) methods, see [5] for
more on this).

MineSweeper is solved until 4x4[17], and is NP-complete in the general
case[4]. NP-completeness is not that impressive in games, as EXP or 2EXP
complete games are not rare; but, in the partially observable case, we have not
so many algorithms which give good results in practice. It is widely known that
counting the number of solutions to a MineSweeper problem such that a mine
appears in a given location is an efficient tool for playing the game; it is directly
proportional to the probability of death if playing in this location. Heuristically,
one can use such a method (playing a move with minimum probability of death)
for approximately solving MineSweeper; however, it is known [8] that such a
strategy is suboptimal, i.e. this is not an optimal strategy, whatever may be the
computation time.

We use the following classical terminology:

– A Markov Decision Process (MDP) is a set of states, with edges labelled
with actions and probabilities; when a run is in state s and an action a
is chosen, the next state is s′ with probability p if there is an edge from
s to s′ labelled with a and p. The sum of the probabilities on out-edges
of a state s labelled with a same action a must be equal to 1. A strategy
for the MDP maps a finite sequence of states to an action (possibly in a
stochastic manner). There are leaf-states (with no out-edge), and one state
distinguished as the initial state; there are also rewards on edges, so that
the overall Markov Decision Process, together with a strategy, leads to a
probability distribution on rewards.

– A Partial Observable Markov Decision Process (POMDP) is similar to a
MDP, except that each state is equipped with an observation. A strategy is
not a function from a finite sequence of states to an action, but a function
from a finite sequence of observations to actions.

– The state in a POMDP can refer to the “real” (partially hidden) state, or
to the observed part only; we will refer to the “real” partially hidden state
as the “complete state” in order to avoid confusion, in particular because in
the MineSweeper literature the “state” usually refers to the observations.

– The feasible set is, given a sequence of observations, the set of possible com-
plete states.

– A consistent belief state estimation is an algorithm which exactly samples the
uniform probability distribution on the feasible set, given the observation.

– An asymptotically consistent belief state estimation is an algorithm which
samples the probability distribution of the hidden state with a distribution
converging to the real one as the computational effort runs to infinity.

Section 2 presents the MineSweeper game. Section 3 will present the al-
gorithms analyzed or proposed in this paper (Section 3.4 is a newly designed
algorithm for combining belief state estimation and tree search). Section 4 will



discuss mathematical aspects. Section 5 will explain why the MineSweeper game
is interesting and present experimental results on it.

As UCT is now a well established part of the game literature, we refer to [9,
13, 16] for more information on it; we only briefly summarize UCT in Fig. 1. Our

– Initialize the memory to one single node, representing the current state; this is the
root of the tree that will grow in memory.

– While ( there is time left), simulate an episode as follows:
• First part of the episode:
∗ start at the root,
∗ select actions using the UCB (Upper Confidence Bound) formula, thanks

to counters updated in previous episodes, until
· you get a state s which is not yet stored in memory (case 1),
· or a final state in the nodes already stored in memory (case 2).

• In case 1:
∗ build a new node in memory: this node corresponds to state s and there

is an edge from s′ to s.
∗ Second part of the episode (termed Monte-Carlo part)): select actions

randomly until you get a final state.
• Let r be the reward of the episode.
• For each node in memory that has been part of this episode,
∗ Increase (by 1) the counter of the number of simulations.
∗ Increase (by r) the counter of the total reward.

– Play the action which is played most often from the root in episodes simulated
above.

Fig. 1. Overview of the original UCT algorithm. There are other variants of the rule
for choosing the actually made action (last line). There are also plenty of improvements
over the initial UCB formula in the episodes; we also use progressive widening and an
improved Monte-Carlo part.

UCT is as specified in Table 1. We use double progressive widening, as explained
in [7].

2 The MineSweeper game

The MineSweeper game exists on many platforms. At each turn, the player
chooses a location in a grid. After the first move, M mines are randomly put on
the h×w board (anywhere except on the chosen location); the player is informed
of the number of mines in the 8-neighborhood of his move. From now on, when
a player plays in location l, there are two cases:

– There is a mine: then, the game is over.
– There is no mine: then, the player is informed of the number of mines in the

8-neighborhood.



Feature In our implementation

Node creation One per simulation

Progressive Double
widening

Leaf evaluation By Monte-Carlo
simulation

Monte-Carlo moves:
If possible Single point strategy (SPS)

(SPS can sometimes propose
riskless moves, otherwise it
does not say anything)

Otherwise: Move with null probability of mines
(SPS does not find all such moves;

but CSP detects all)

Otherwise,
with probability 0.7 Move with minimum

probability of mine (computed by CSP)

Otherwise Randomly draw a hidden state
and play a move with no mine

for this hidden state (computed by CSP)

Bandit formula Upper Confidence Bound
with variance estimates[1]

Forced moves[23] Points with null
probability of mines
(estimated by CSP)

Table 1. Our UCT implementation in one table. Our work is on the belief estimation
part and our UCT is just a classical variant. The single point strategy (from PGMS) is
detailed later (Section 3.4). CSP refers to Constraint Satisfaction Problems, and SPS
refers to the Single Point Strategy.



The game is a win if the player plays the h×w−M locations with no mine without
ever playing a move on a mine. In usual implementations, when a move is played
with no mine in the 8-neighborhood, then all the neighbours are automatically
played as they are for sure secure moves; this just saves up time.

All our experiments are performed on the MineSweeper game; the
MineSweeper game is more complicated than expected at first view[12, 4, 17].
MineSweeper has motivated a lot of research, sometimes for pedagogical rea-
sons[3] (including a nice version aimed at teaching quantum mechanics[10]),
or because it is a widely spread game (anyone here who has never played a
MineSweeper game ?), or as a model for real problems[11], and as a challenge
for machine learning[6] or genetic programming[14].

Minesweeper artificial intelligences fall in two categories:

– Algorithms based on the understanding of the underlying Markov Decision
Process, which is quite hard to analyze and solve[17];

– Algorithms based on heuristically choosing the move with lowest probability
of immediate death by Constraint Satisfaction Problems; these algorithms
are probably the most impressive for real board size and time settings.

The classical approach for playing MineSweeper consists in using Constraint
Satisfaction Problems[22] (CSP). It provides a consistent estimate of the prob-
ability of immediate death in case of play in a given location; minimizing this
is a quite good heuristic. However, this is not optimal[8]; we here propose an
approach which is asymptotically optimal by using UCT (a consistent MDP
solver) combined with a consistent belief state estimation by a CSP algorithm.
Importantly, this work in based on [17], which shows the relevance of CSP as a
consistent belief state estimator. Using CSP inside UCT will require more than
just the computation of the probability of presence of a mine in each location - we
will need the complete probability of a given complete state given observations.

The best published results are usually those of the CSP approach, with 80%
(beginner: 9x9, 10 mines), 45% (intermediate: 16x16, 40 mines); and 34% in
expert mode (16x30, 99 mines). [18] proposed a so-called limited search method
which gets a earthshaking 92.5% (beginner), 67.7% (intermediate).

Following most previous works, we work on a version of the game in which
the first move can not be on a mine (the mines are randomly drawn until they
are not at the first chosen location). We do not use the variant in which the
initial move is on a “zero” location (as the Linux Gnomine version); this looks
like a very good idea for reducing the probability of unlucky death, but it is
not widely used and therefore we prefer to be consistent with the body of work
around MineSweeper.

We point out the importance of the initial move; the CSP approach does
not say anything on it, whereas it is critical; we believe that this explains the
success of some implementations - even if the algorithm is not better than the
CSP approach, and if the authors have implemented a good initial move or a
good opening book, then they might get better results than the CSP approach.
However, we point out that the initial move is not the only suboptimality of CSP;



as shown in [8], many small patterns lead to suboptimal moves with non-zero
probability.

3 Algorithms

Many algorithms for solving POMDP are based on two tools, more or less sep-
arated, namely:

– the estimation of the belief state (i.e. the probability distribution on the
complete state, including the hidden part);

– the choice of a move, based on this estimated belief state.

These two components are more or less separated, depending on the approaches.
In CSP for MineSweeper, the second part is trivial (play the move with lowest
probability of being a mine) whereas the first part is exact. Our goal is to do a
non-trivial second part. For the second component, we will use a Monte-Carlo
Tree Search; following [20], we will generate transitions conditionally to past
observations (we need a complete forward model for a UCT implementation).

We here focus on the first component, namely belief state estimation, and
discuss several approaches:

– A simple rejection method (Section 3.1);

– Constraint Satisfaction Problem (CSP, Section 3.2); this is an optimal belief
state estimation algorithm, but to the best of our knowledge it has never
been used inside a tree search; as a consequence, existing CSP algorithms
are not optimal; we will here use it as a belief state estimation rather than
as a myopic heuristic;

– Naive Constraint Solving plus Markov-Chain Monte-Carlo (Section 3.3); this
was tested in [8] but the authors do not report better results than the simple
rejection method;

– BSSUCT (Belief State Solver + UCT), a new method presented in Section
3.4.

3.1 Rejection method

The rejection method is the simplest tool for estimating the complete state,
given the observable part. It is consistent, i.e. it proposes an exact belief state
estimation; it can be slow, but it will use, by definition, a computation time
sufficient for ensuring a correct estimate. The pseudo-code is given in Alg. 1.

In spite of its simplicity, it was reported to be the best method in [8]; the
interpretation of this result in [8] is that rejection was the only method which was
consistent (The Markov-Chain Monte-Carlo method is asymptotically consistent
only). Following this comment, we propose a method which is consistent, as well
as the rejection method, but faster, cf Section 3.4.



Algorithm 1 The rejection method for consistent belief state estimation. C
is a parameter such that C × Likelihoodobservation(s) ≤ 1; if the likelihood of
observations, given hidden state, is binary (0 or c), as in MineSweeper (c = 1 for
MineSweeper), then C = 1/c is the optimal choice; it just means that we accept
the state if and only if it is consistent with observations.

Input: observations.
Output: a (uniformly sampled among consistent states) complete state.
s←random complete state
while random ≥ C × Likelihoodobservations(s) do

s←random complete state
end while

Return s

3.2 Constraint Satisfaction Problem (CSP)

We here refer to the many implementations based on counting all complete states
which are consistent with observations, i.e. the entire feasible set. This provides
the exact probability, for each location, to be a mine. The CSP algorithm can
be used for exactly estimating the probability of transition to a given state; yet,
to the best of our knowledge, it has only be used for estimating the probability
for each location to be a mine and for playing this move. Such an algorithm is
presented in Fig. 2.

Algorithm 2 The CSP algorithm for playing MineSweeper. The algorithm is
intrinsically myopic: it only optimizes the 1-step result (minimum probability of
immediate death).

CSP-function for choosing a move on a partially visible board with M mines
for each location l of the board do

Nb(l)← 0
end for

for each positioning p of the M mines on the board consistent with observations do
for each location l with a mine for p do

Nb(l)← Nb(l) + 1
end for

end for

Play move l uniformly chosen among the set of uncovered locations l such that Nb(l)
is minimum.

3.3 Naive Constraint Solving plus Markov-Chain Monte-Carlo

Markov-Chain Monte-Carlo (MCMC) is a tool for asymptotically consistently
estimating the belief state. Metropolis-Hastings (MH) is a classical version of
MCMC. In the case of MineSweeper, or more generally a case in which obser-
vations are deterministic and binary as a function of the belief state, and with



a symmetric transition kernel (i.e. the probability of mutating from state x to
state x′ is equal to the probability of mutating from state x′ to state x), MH
boils down to an algorithm as shown in Alg. 3.

Algorithm 3 A version of Metropolis-Hastings with symmetric transition ker-
nel in the case of deterministic binary observations (as in MineSweeper). Please
note that removing the initial constraint solving does not change the asymptot-
ical properties of MH; this improved initialization is here for saving up time.
According to [8] and for the mutation used there, the initial state chosen by
constraint solving unfortunately leads to a too big bias and makes the overall
algorithm weaker than the simple rejection method.

Input: observations.
Output: a (nearly uniformly sampled) complete state.
Find an initial state s by constraint solving, consistent with observations.
Select a number T of iterations by heuristic methods

// in [8], T depends on the number of UCT-simulations.
for t ∈ [[1, T ]] do

Let s′ be a mutation of s
if s′ is consistent with observations then

s← s′

end if

end for

Variants of this version were tested in [8], with disappointing results; the
authors conclude that the asymptotic consistency of this approach (instead of
”real” consistency of the rejection method) was the reason for the moderately
good results. Obviously, it is hard to conclude on this point without testing
rigorously the infinitely many possible approaches (the many parameters) for
MCMC; maybe, there is a version which would make Alg. 3 extremely efficient.
However, we want to have a simple methodology, as far as possible indepen-
dent of the problem; therefore, we will propose in Section 3.4 a rigorously non-
asymptotically consistent belief state estimation.

3.4 BSSUCT: Belief State Solver + Upper Confidence Trees

Our variant of UCT is detailed in Table 1. Our UCT uses several modules:

– the single point strategy as in PGMS (http://www.ccs.neu.edu/home/
ramsdell/pgms/). The basic idea is that if k of the neighbours of a location
are mines, and there are n neighbours, m of which are non-mines and p of
which are mines and n−m− p are uncovered, then:
• If k = n−m− p, then all uncovered neighbours are mines;
• If k = p, then all uncovered neighbours are not mines.

Propagating this is usually done in MineSweeper interfaces in the case k =
0 (all neighbours are then automatically played without human action for



fastening the gameplay). Implementing the general case is easy and can’t
hurt (this plays riskless moves only).

– CSP. Constraint Satisfaction is applied for finding all possible hidden states.
We use least constraint variables first - whereas most constrained variables
should be used first when looking for one single solution, it is better to
use least constrained variables first when looking for all solutions. CSP, in
reasonnable time, can provide many information:

• the probability, for each location, that there is a mine;

• as a consequence, it can point out sure moves, to be played with no risk;

• the exact probability distribution of the next state (i.e. how will be the
board after next move). With this, the POMDP becomes a MDP.

The use of these modules is detailed in Table 1.

4 Theoretical analysis

We show the consistency of our approach (section 4.1) in the generic case and
the non-consistency of the classical approach (constraint satisfaction problems)
for the MineSweeper game (section 4.2).

4.1 Consistency of the approach

We first discuss the consistency of our UCT approach as a MDP solver.

UCT (Upper Confidence Trees) is a consistent MDP solver[13] in the finite
case. Our approach uses heuristics in the evaluation of leafs by Monte-Carlo
simulations, but it does not matter for the consistency proof in [13]. We also
use heuristics in the tree part of UCT; this is not detailed in [13], but the
upper-confidence-bound proof from [15, 2], used in [13], is also independent of
heuristics. A last component which differs from [13] is progressive widening[7];
however, progressive widening here has only a non-asymptotic impact because
the number of actions and the number of random outcomes is finite. So, if the
problem is a MDP, our UCT-based approach is consistent.

This shows that our approach is consistent for solving a MDP.

We then discuss the consistency for the application to MineSweeper. The
difficulty is that MineSweeper is not a MDP: there is partial information, and
therefore it is a POMDP. However, [17] has shown that the partial information
can be exactly estimated by CSP. The classical approach by CSP is not optimal
for playing when just used for the heuristic “play the move with lowest proba-
bility of immediate death” (as shown in [8] there are simple situations in which
this is not optimal), but it is an exact tool for rephrasing a POMDP as a MDP.

As a consequence, our algorithm is a consistent MDP solver, and combined
with CSP it is an asymptotically optimal MineSweeper player.



4.2 A simple case in which our algorithm is better than CSP-based
approaches

Our algorithm is asymptotically consistent, i.e. finds the optimal strategy if
given a sufficient thinking time (it is asymptotically consistent because UCT is
asymptotically consistent for solving MDPs and the rejection method provides
the right MDP as explained in Section 4.1). Therefore, it finds the optimal
strategy for MineSweeper in 3x3 with 7 mines. We here show that CSP, playing
uniformly the initial move, can not be optimal in such a case.

Let’s see the success rate, depending on the first move, in this small version
of MineSweeper:

Fig. 2. A bad initial move in 3x3 with 7 mines.

– If we play in the center, we necessarily observe 7; the probability of winning
is then 1

8
as there are 7 mines in the 8 neighbours (see Fig. 2).

– If we play on a side, then we observe:
• a 5 with probability 3

8
; then the probability of winning is 1

3
;

• a 4 with probability 5

8
; then the probability of winning is 1

5
.

This means an overall probability of winning at most 1

4
= 3

8
×

1

3
+ 5

8
×

1

5

when starting on the side.
– If we play in a corner, then we observe:

• a 2 with probability 3

8
; then the probability of winning is 1

3
;

• a 3 with probability 5

8
; then the probability of winning is 1

5
.

This means an overall probability of winning at most 1

4
= 3

8
×

1

3
+ 5

8
×

1

5

when starting in a corner.

An optimal strategy then consists in playing either on a side or in a corner, in
order to get a probability 1

4
of winning.

The CSP algorithm plays uniformly the first move, because all moves have the
same probability of death; therefore, it has a probability of winning 1

9
×

1

8
+ 8

9
×

1

4
=

17

72
, which is less than the probability 1

4
of winning obtained by an optimal

strategy (and asymptotically reached by BSSUCT).



5 Experiments: MineSweeper

We do validation experiments in the GnoMine Custom mode, as the GnoMine
rule (the first move is a zero) makes the problem easier to analyze in a math-
ematical manner so that we can check the optimality of our algorithm. Then,
we switch to the classical MineSweeper rule (the first move is not a mine). We
compare our approach to the CSP-PGMS results.

5.1 A Gnomine Custom mode: 15 mines on a 5x5 board

The GnoMine version has this special rule that the location played first has no
mine in the neighborhood. This implies that playing in the center leads to a
sure win in the configuration 15 mines on a 5x5 board (see Fig. 3). Interestingly,
our algorithm finds this optimal strategy (that humans easily find as well); but
the important point here is that the CSP method does not say anything about
the choice of the first move. If we play randomly and uniformly the first move,
then we have a probability 4

25
of playing in (2,2) (or a symmetry of it), with

then a probability of loosing the game at least 1

2
; and we have a probability 4

25

of playing (2,3) (or a symmetry of it), with then a probability of loosing the
game at least 1

4
. This leads to an overall probability of loosing the game at least

1

2
×

4

25
+ 1

4
×

4

25
= 3

25
; the real probability is indeed much bigger, as (1,1), (1,2),

(1,3) are also very bad moves, but we do not compute the detailed probability -
the lower bound 3

25
on the probability of loosing is enough for showing that the

CSP can not reach the optimal play (that our BSSUCT provably reaches).
Given the rules only (no expert knowledge added), our algorithm asymptot-

ically finds the best move, and in 5x5 with 15 mines and gnomine rules it finds
it in 5 seconds (in all runs among 500 runs).

Fig. 3. The Gnomine version of the 5x5 board with 15 mines is a sure win: on each
of these figures, one can deduce the position of all mines (there is only one non-mine
location). This covers all possibles cases by rotation.

5.2 Windows version, various board sizes

We compare our algorithm (BSSUCT) with CSP on various board sizes; the
CSP implementation we use is the CSP-PGMS implementation from http://



www.ccs.neu.edu/home/ramsdell/pgms/ which plays in corners for the initial
moves. Results are presented in Table 2.

Format CSP-PGMS BSSUCT

4 mines on 4x4 64.7 % 70.0% ± 0.6%

1 mine on 1x3 100 % 100% (2000 games)
3 mines on 2x5 22.6% 25.4 % ± 1.0%

10 mines on 5x5 8.20% 9% (p-value: 0.14)
5 mines on 1x10 12.93% 18.9% ± 0.2%

10 mines on 3x7 4.50% 5.96% ± 0.16%

15 mines on 5x5 0.63% 0.9% ± 0.1%

Table 2. Winning rate of our implementation, versus the winning rate of CSP-PGMS.
The winning rate for CSP-PGMS is estimated on 100000 games; we provide the stan-
dard deviation for our program which is much slower and therefore has non-negligible
confidence intervals. Importantly, CSP-PGMCS does not benefit from additional time.
The games are played with 10s per move, except for 10 mines in 5x5 (300 seconds
per move) and 10 mines in 3x7 (30s per move). All experiments on a 16-cores Xeon
2.93GHz Ubuntu 2.6-32-34 using 1 core only per experiment.

6 Conclusion

We have proposed the use of UCT for difficult decision tasks, with CSP for two
simultaneous purposes:

– estimating the belief state, so that a POMDP becomes a MDP;
– suggesting good moves, in a heuristic manner.

This provides a generic methodology for improving a myopic solver by including
it into a UCT. We strongly believe that such approaches, using consistent asymp-
totic behaviors and myopic-guided heuristics, are important for future artificial
intelligence, benefiting both from relevant heuristics (which provide tractability)
and strong computational power and mathematical consistency analysis (which
provide asymptotic optimality). Starting at a reasonnably good strategy and
improving it towards optimality by UCT looks like a simple efficient idea.

We have shown the mathematical consistency of the approach, as well as
experimental results. The experimental results are on MineSweeper, which is
particularly challenging as the CSP approach, which completely neglects long
term effects, is very effective as uncertainties are so big that long-term effects
are very unreliable - we have chosen a very hard test case and we nonetheless
get significant improvements. When the computation time becomes big, CSP
does not improve anymore (it has inherent limitations), whereas our approach
performs better and better.

For getting impressive results in the game community, we will work on a faster
implementation; our CSP module is much slower than e.g. CSP-PGMS. It should



be easy to work on expert modes, provided that we have an implementation as
fast as CSP-PGMS for the CSP module. We have already clear improvements
on small boards, compared to [8]. As a future work, we will also compare with
results of [18].

A crucial good piece of news for our algorithm is that we do not enter any
opening move manually (as necessary for good performance with CSP); and we
can switch easily to variants of MineSweeper just by changing the implementa-
tion of the rules.
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