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Abstract

This article deals with the question whether minesweeper graphs
with bounded vertex degrees d < 3 are NP-complete. The answer to
this question—stated to be open in [B]—will be positive which gives
a clear border between simple polynomially solvable and NP hard
instances with regard to the vertex degrees: Bounding those by 2 has
been shown to cause simple graphs while allowing vertices to have 3
neighbors leads to hard instances in general.

Additionally we discuss more possible properties for NP-complete
minesweeper graphs and find a simple way to reduce some classes
of graphs to 3SAT. The first section also gives a short overview of
Minesweeper’s generalization on graphs.

Minesweeper (MW) is the well-known puzzle-game coming with the Mi-
crosoft Windows operating system. The player sees a rectangular board of
fields with hidden mines. He must visit/open all secure fields and only knows
the number of mines surrounding a visited field. He may mark detected mines
with a flag, but must not visit those fields.

1 Minesweeper on Graphs

The simple model of MW which consists of fields 7 = M x N and a neighbor-
hood function N—derived from the maximum metric—can be generalized in
a very natural way: Let F be an arbitrary set of fields and N : F x F — N
a weighted neighborhood function, we interpret (F, N') as the generalized
adjacency-matrix of a graphl.

'We are interested in a graph’s vertices and the number of edges between two of them
and assume a fitting isomorphism to be given.



Following the standard model, let M be the set of mines—i.e. the subset
of fields containing a mine—we name u = x its characteristic function
mines indicator and define surrounding danger o and explosivity € as follows:

c: F — N
= YyerN(z,y) 1 (y) @
e: F — N
o {70 = @)

The equivalence ¢ = oo on the mines M models the fact that those fields
provide no information on their neighbors.

The definition of a configuration helps us to hide information of unvis-
ited/closed fields: For a board (F, ) the tuple (F, N, D, k) with D C F the
visited fields and k : D — N the values displayed describes a snapshot we
can imagine. Such a configuration need not be derived from a real situation,
there is no a priori connection between x and e. This remark directly leads
to the Consistency Problem for Minesweeper on Graphs (MWG):

Problem 1 (MWG) Given a configuration (F,N,D, k), is there a set of
mines M C F such thal k = €|p the values displayed show the explosivity on
the visited fields?

For examining the complexity of MWG we need to describe instances of
the problem on a computer. A configuration consists of the adjacency-matrix
N and the partial function . The structure of the matrix is 3-dimensional
because it needs to assign integers to pairs (of fields), its size is |F|-by-|F]|-
by-max . Similarly we find a 2-dimensional structure for the latter with
size |F|-by-max . The ways to handle such structures are well-known.

We show that MWG is in the complexity class NP which contains all
problems with a polynomial-time computable checking relation (see [0 for
a proper definition). Finding a complete search-space for polynomial-time
checkable witnesses whose lengths are bounded by a polynomial in the length
of the instance proofs membership of NP. Of course i the mine indicator
provides such witnesses:

e The search-space contains all functions p : F — {0,1}. They can be
coded as string of linear length |F| over a finite (binary) alphabet.

e The runtime of the computation of the explosivity € defined by equa-
tions () and (@) is bounded by a polynomial as well as the comparison
to the displayed values k.



e Such a witness exists iff the given instance is consistent.

An algorithm on a 3-dimensional Turing machine for solving MWG can be
found in [B]. Anyway the witness can be coded within linear bounds of the
input length, therefore a contert-sensitive grammai? exists for a language
which describes exactly the consistent MWG instances.

2 Reductions

In order to define complexity classes, reductions between problems have been
established. Informally we can describe them as a relation A < B (say
problem A reduces to problem B) which holds iff one can solve problem A
given a solving algorithm for problem B. We should know that finding a
computable function whose runtime-bound corresponds with the complexity
class and which maps instances of A to instances of B with the same yes/no-
answer proofs such a reducibility.

A problem in a complexity class is said to be hard or complete in it iff all
problems in this class are reducible to it. In the case of NP the corresponding
bounds are polynomials in the length of the input. Reducibility is transitive
on finite sets and therefore we can proof NP-completeness by using a hard
reference problem: The standard MW game on a rectangular board can be
modeled by special cases of MW on Graphs. Therefore the latter is not
simpler and Kaye’s proof of MW’s completeness in NP ([2]) provides as a
corollary that MWG is NP-complete.

Now we want to find a lower limit of NP-completeness within MWG:
What is sufficient /necessary for a graph to provide hard instances of MW?
For that purpose we look at other reductions to MWG. It turned out to
be fruitful to regard 3-Dimensional Matching (3DM)—another NP-complete
problem.

Problem 2 (3DM) Given three finite sets of same size k = |X| = |Y| =
|Z| and a 3-ary relation R C X XY X Z on them, is there a subset U C R
of size |U| = k which contains every element of each set X, Y and Z?

Vee XjyeY,z€ Z: Jugy,uy,u, €U :x=m (ug) Ny = m2 (uy) Az = 73 (us)

This problem can be interpreted as a party with girls X, boys Y and
rooms Z and sympathies R. Could everybody be satisfied at the same time?
It is easy to show that one need not demand the subset’s size to be |U| = k

2A definition can be found in nearly any introduction to complexity/language theory.
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Figure 1: 3DM<MWG Reduction

when every element of X, Y and Z must appear in (the right position of)
ezactly one tuple u € U.

We are now going to show NP-completeness for special classes of MW
graphs. One way to find reductions between NP-complete problems is to
identify witnesses. In order to show 3DM<MWG we use the characteristic
function yycr and build a MW graph which contains it as mines indicator
p of some unvisited fields r € F \ D.

Figure[Ddisplays this concept: circles indicate fields labeled with numbers
(1)—iff visited—and question marks (7), arrows stand for a neighborhood as
known from graph drawings and the interpretation is given beside the fields.
Here we can show straight forward that it’s not necessary to force exactly k
of the fields in question to have a mine:

S ul) = Z(ZN<x,r>)u<r>: S YN () ) =

reR reR \zeX z€X reR
= > Y N@yuy) =Y o@)=> @) =|X=k
zeX yeF reX rzeX

A 3-dimensional matching obviously has a consistent mine placement on the
corresponding configuration and vice versa.

But it’s worth to take a closer look at the configurations derived from
instances of 3DM: Displayed values are restricted to 1 and we do not need
the generality of the graph definition. Results shown in [3] include that the
following items of a MW graph are useless—i.e. they do not decide consis-
tency:

e edges with a secure target or a source which has a mine
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e Joops
e fields who are known to have a mine (if predecessors in D respect it)
e isolated fields (if v € D = k(x) =0)

And we see that the graphs we get are directed, simple (no loops or edges
with the same incident vertices) and locally star-like (all vertices are either
the source or the target of all their edges). The latter is a strong version of
being bipartite for directed graphs. We also note the following bounds:

o |F|=3k+|R| <3k+kK

o {(z.y) € F2: N (z,y) > 0} = 3|R| < 3k’
e N <1

e x=1and o|pp=0

Vertex degrees are further quantitative properties which can be subject to
bounds. We easily verify d= = 3 for the in-degrees, but there is no a pri-
ori bound better than dt < |X x Y| < k? for out-degrees. Once we have
found one, we will immediately be able to state a bound for the undirected
shadow-graph—which is an equivalent MWG instance—because d* + d~ =
max {d",d”} due to the locally star-like property.

Next we proof that d* < 3 can hold if more vertices are added. The
structure of our graph which decides consistency is quite simple because
every field 1 has some neighbors and this yields the only detail that must
hold. We show that this 1-out-of-n-condition can be handled under d* < 3
by induction by n. There is no problem for n = 1,2, 3.

Assume it is shown for n, we use the complexity reduction figured on page
to offer a field x5 which has a mine—in a consistent mine placement—iff
the field x1 or x5 has a mine and to prevent those fields from being insecure
synchronously. The assumption is applied to force exactly one out of the n
fields 129, 23, ..., T, to have a mine.

Two remarks should be made here: The concept of the configuration

shown in figure [2is best checked when listing all consistent mine placements.
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Figure 2: 1-out-of-n Complexity Reduction

And it is irrelevant whether we construct a balanced complexity reduction
tree for the number of vertices added. We could bound its depth by logarith-
mic costs, but an additional amount of 4 (n — 3) fields and the same number
of edges is used anyway.

Figure Bl shows another concept presented in [3]. This configuration can
be used to cross information provided by witnesses for unvisited fields in the
plane. Results from planar circuit problems provide the trick using three
“equality gates”. They are simulated with the pairs of 2-fields in every rect-
angle which force exactly 1 or 3 mines on the adjacent fields x, y and u. This
makes any of them indicate whether the others are synchronously (in)secure.

After rearranging the fields of a SDM<MWG instance using “wires” (x «
T — x « ...) and crossings, it is easy to verify that MWG is hard on planar,
simple and locally star-like graphs with NV <1, k <2,d” <3 and d* < 4.

3 SAT again

Satisfiability of Boolean formulae has been the first problem shown to be
NP-complete. For wariables x;, i € N we define literals x; and ;. A k-
clause is the disjunction (yo V ...V yx_1) of k literals y;,i € k. A k-formula
is the conjunction Cy A ... A C,,_1 of finitely many k;-clauses where ¢ € m
and k; < k. A formula in conjunctive normal form (CNF) is a k-formula for
some k € N. As usual a function ¢ : N — {0, 1} is called assignment (to the
variables) and extended to literals, clauses and formulae to model Boolean
logic.

Problem 3 (SAT, kSAT) Given a formula, is there an assignment such
that it evaluates to “true”? (kSAT is restricted to k-formulae.)

We know that SAT is NP-complete as well as kSAT for £ > 3, but
2SAT is polynomially solvable. It has also been shown that the expression
1(y1,-..,yn) (“exactly one out of these literals is true”) can be modeled in



Figure 3: Plane MWG Crossing

nSAT using the literals n? times:

Ly, .- yn) = V...V A N @ V)

1<i<j<n

Of course the expression “exactly one out of those is false” can be handled
in an analogue way.

Now it is easy to reduce the MWG instances which we have constructed
to SAT: Assume a directed, simple, locally star-like MW graph with x = 1,
we introduce one variable per unvisited field and use 1(...) expressions to be
able to identify corresponding witnesses. This reduction even yields kSAT in-
stances with & = maxd* and every variable appears only as a positive literal
and at most maxd~ times in these expressions—thus at most maxd~ times
as a positive literal in (max d*)-clauses and (maxd~) (maxd* — 1) times neg-
atively in 2-clauses.

This provides another approach: We do not need x = 1. Assume such
a MW graph with d* < 3, we can imagine all expressions “exactly d-out-
of(-up-to)-3” for d = 0,...,3 because “2 out of 3”7 means that exactly one
is “false”. We find a 3-formula which is equivalent to the graph given. And



of course these arguments offer a simple proof that MW graphs with d* < 2
are polynomially solvable via MWG g+ <o <2SAT.

At last the locally star-like property is too strong. We can even allow
undirected and mixed graphs when demanding that they are bipartite in
such a way that the wisited fields are not separated by the partition. We

show another lemma which has already been used in analysis of standard
MW games:

Lemma 4 Given a configuration (F,N,D,k) and a consistent mine place-
ment M then M, .= M A {x} is consistent for all x € F\ N (D).

Proof We show that €,|p = €|p holds. Note that the mine indicator for M,
only changes on x. Therefore €, (y) = co = € (y) is obvious for y € DN M.
On the other side y € D\ M yields

W)= Ny,2)piz)= DY Nu.2)uz)= Y N 2 (2) =€ (y)

z€F 2N (D) zEN (D)
We have shown €, (y) = €(y) = k (y) for all y € D and thus consistency. O

This lemma provides two corollaries immediately: On the one hand there
are as many consistent mine placements with x € F\ N (D) being secure as
those with x having a mine. This means that the probability for z having a
mine—under the obvious model—is 1/2. And on the other hand we see that
these z € F \ N (D) are unnecessary.

Now we remove all unnecessary items of this bipartite MW graph includ-
ing the unvisited fields in the set of the known ones. Then we resume as
above because the remaining graph is locally star-like and equivalent to the
given one.

4 Summary and Outlook

For configurations on Minesweeper Graphs we found out that the graphs can
be minimized to the visited fields—the domain of the partial function x—and
their neighbors without changing consistency. Above that, the neighborhood
function NV (x,y) can be set to 0 whenever y € D or x € F \ D, i.e. we can
remove all edges with unknown source or opened target.

We found an easy way to reduce MW Graphs to SAT. Herein the proofs
cover the following cases for polynomial reductions—where some of the con-
ditions are automatically met by the equivalent minimized graphs:

SN (X) with X C F is the set of neighbors of X, ie. {y € F:3z € X : N (x,y) > 0}
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e simple, locally star-like, Kk = 1
e simple, locally star-like, dt < 3 (d* < K € N will hold too)
e N < 1, bipartite not separating D; k =1 or d* < K € N

The mentioned graphs even yield (d™)SAT instances. Detailed regards of
polynomial reductions of graphs with bounded or arbitrary x, d* and N are
going to be done. SAT solving algorithms will then be adapted for MWG.

Another intension of this article was to explore the border between poly-
nomially solvable and NP-complete MW Graphs. Those with out-degrees
bounded by d* < 2 reduce to 2SAT and thus are in P. More classes of simple
instances (e.g. forests) are going to be found.

On the other hand we do not lose NP-completeness when requiring one
of the following properties for MW Graphs:

dt <3,d" <3, N<1, k=1,
planar, simple, directed, locally star-like

We can even combine most of these conditions (or at least slightly weaker
ones) while constructing hard instances of MWG.

Although the topic is the current subject of the author’s research, this
article already points out some remarkable results and ideas coming with
Minesweeper on Graphs—even beyond [Bl—but still seems to be far from
covering easily upcoming results.
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