
Playing the Minesweeper with Constraints

Raphaël Collet

Université catholique de Louvain,
B-1348 Louvain-la-Neuve, Belgium.

raph@info.ucl.ac.be

Abstract. We present the design and implementation of a Minesweeper game,
augmented with a digital assistant. The assistant uses contraint programming
techniques to help the player, and is able to play the game by itself. It predicts safe
moves, and gives probabilistic information when safe moves cannot be found.

1 Introduction

The Minesweeper game has been popular for several years now. Part of its popularity
might come from its simplicity. A board represents a mine field, with mines hidden un-
der the squares. The game consists in finding the mines without making them explode.
You get new hints each time you uncover a non-mined square. Though, the simplicity
does not make the game easy. The Minesweeper problem is hard: it has been proven
NP-complete by Richard Kaye [1]. So simple techniques are not enough to solve it.

In this paper we show how the problem of finding safe moves can be modeled
as a Constraint Satisfaction Problem (CSP). Techniques from the field of constraint
programming can be used to program a digital assistant for a player. We applied them
in a real application, the Oz Minesweeper. This relatively small program demonstrates
the power of the programming language Oz.

Paper organization. Section 2 recalls the rules of the game, and proposes a simple
mathematical model for it. Section 3 investigates how constraint programming tech-
niques can be applied in order to solve the problem with reasonable efficiency. Sec-
tion 4 then gives an overview of the implementation of the Oz Minesweeper. Section 5
evaluates and quickly compares our work to other similar products.

2 The Game as a Constraint Satisfaction Problem

Let us recall the rules of the game. A mine field is given to the player as a rectangu-
lar board. Each square on the board may hide at most one mine. The total number of
mines is known by the player. A move consists in uncovering a square. If the square
holds a mine, the mine explodes and the game is over. Otherwise, a number in the
square indicates how many mines are held in the surrounding squares, which are the
adjacent squares in the eight directions north, north-east, east, south-east, south, south-
west, west, and north-west. The goal of the game is to uncover all the squares that do
not hold a mine.

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

Fig. 1. An example of a board with 20 mines.

An example of a board is given in Fig. 1. This board contains 20 mines. Each square
is identified by its coordinates

�
row � column � . The squares (1,1), (1,2), (1,3), (1,4), (2,1),

(2,2), (2,3), (2,4), (3,4), and (4,4) have already been played, and have no mine in their
respective surrounding squares. The squares (1,5), (3,1), (3,2), (3,3), (4,3), and (4,5)
have been played, too, and are surrounded by one mined square each. The square (2,5),
(3,5), (5,4), and (5,5) each have two mines in their neighborhood, while the square (5,3)
has three mines around it. In this example, the player might deduce from (3,3) that (4,2)
is mined, and by (3,2) that (4,1) is a safe move.

Finding safe moves on the board consists in solving the problem given by those
numbers in the squares. The unknown of the problem is the positions of the mines. We
model this as a binary matrix that represents the mine field, with one entry per square.
The value 1 means that the corresponding square is mined, while 0 means a safe square.

����
�

x11 x12 ����� x1n

x21 x22 x2n
...

. . .
...

xm1 xm2 ����� xmn

	�

�

From now on, xi j will always denote the matrix entry corresponding to the square at
position

�
i � j � . The problem can be written as linear equations over the xi j’s. In the

example, we have 20 mines (first equation below), and the played squares are not mined
(second equation below). The other equations are given by the numbers in the squares.

The corresponding square coordinates are given on the left of each equation.

∑i j ��� 1 � � �� 10 � xi j � 20

x11 � x12 � x13 � ����� � 0�
1 � 1 � x12 � x21 � x22 � 0�
1 � 2 � x11 � x13 � x21 � x22 � x23 � 0������
1 � 5 � x14 � x16 � x24 � x25 � x26 � 1������
2 � 5 � x14 � x15 � x16 � x24 � x26 � x34 � x35 � x36 � 2�����

This binary model of the game defines a CSP, which we can solve to find hints for
the player’s next move. If we have all the solutions of the problem, we can look at what
is common to all those solutions. For instance, if all solutions give x41 � 0, we know
that the square at position

�
4 � 1 � is a safe move.

But we even go further than this. Assuming that all those solutions have the same
probability, we can compute the expected solution, i.e., the mean of all solutions. This
gives us a probability for each square to be mined. In case no safe move can be found,
the player might use this information to choose its next move.

3 Propagation, Search, and Probabilities

We now present specific information related to the implementation of the inference
engines. Each of them provides a way to solve the CSP defined by the current state of the
game. Sections 3.1 and 3.2 shows two implementation based on constraint propagation
only. Sections 3.3 and 3.4 presents two solvers, and explains how their results are used
to compute mine probabilities.

3.1 Simple Propagators

The simplest inference engine uses the binary model of the Minesweeper game, and
posts the propagators that trivially implement the constraints of the model. We illustrate
this with the example shown in Fig. 1. A quick sketch of the CSP is given at the end
of Sect. 2. All those constraints can be implemented with the Oz propagator FD.sum,
taking a list of FD variables with domain 0#1. For instance, the propagator for (2,5) is
created by a statement like

{FD.sum [X14 X15 X16 X24 X26 X34 X35 X36] ´=:´ 2}

Let us now examine the effect of those propagators. For the sake of simplicity, we
assume that the “zero” constraints like (1,1) have been propagated, and we simplify the

remaining constraints using the known values. The constraints are�
1 � 5 � x16 � x26 � 1�
2 � 5 � x16 � x26 � x36 � 2�
3 � 1 � x41 � x42 � 1�
3 � 2 � x41 � x42 � 1�
3 � 3 � x42 � 1�
3 � 5 � x26 � x36 � x46 � 2

�
4 � 3 � x42 � x52 � 1�
4 � 5 � x36 � x46 � x56 � 1�
5 � 3 � x42 � x52 � x62 � x63 � x64 � 3�
5 � 4 � x63 � x64 � x65 � 2�
5 � 5 � x46 � x56 � x64 � x65 � x66 � 2

The propagator for (3,3) immediately infers x42 � 1, which means that we have found
the position of a mine. This information allows propagators (3,1) and (3,2) to infer
x41 � 0, while the propagator (4,3) infers x52 � 0.

The remaining propagators cannot infer new constraints, and thus wait for more
information to come. Still, more information can be deduced from those constraints.
But the propagators that we have considered here cannot do it, because they share too
few information with each other. For instance, propagators (1,5) and (2,5) could infer
x36 � 1 if they were sharing x16 � x26 � 1 as a basic constraint. This insight leads us to
an improvement in the propagation of the constraints.

3.2 The Set Propagators

We now show propagators that infer information about sets of squares, hence the name
“set” propagators. We continue with the example shown in Fig. 1. Let us assume that
the simple propagators have determined the variables as explained above. We consider
the remaining constraints�

1 � 5 � x16 � x26 � 1�
2 � 5 � x16 � x26 � x36 � 2�
3 � 5 � x26 � x36 � x46 � 2�
4 � 5 � x36 � x46 � x56 � 1

�
5 � 3 � x42 � x52 � x62 � x63 � x64 � 3�
5 � 4 � x63 � x64 � x65 � 2�
5 � 5 � x46 � x56 � x64 � x65 � x66 � 2

Remember that the weakness of the simple propagators was coming from their unabil-
ity to share information about subterms like x16 � x26. Consider for instance constraint
(2,5). The improved implementation of this constraint will actually create as many prop-
agators as partitions of the set of indices � 16 � 26 � 36 � .

For each subset I of indices, we consider the “set” variable xI defined by

xI � ∑
i � I

xi �
The definition of xI can be implemented by a simple propagator. We can now express
the constraint (2,5) as follows. For each partition P � � I1 � ����� � Ik � of the indices, we
create one propagator for the constraint

xI1 ��������� xIn � 2 �
which is equivalent to (2,5). We thus have propagators for�

2 � 5 � a � x � 16 � � x � 26 � � x � 36 � � 2�
2 � 5 � b � x � 16 26 36 � � 2

�
2 � 5 � c � x � 16 � � x � 26 36 � � 2�
2 � 5 � d � x � 26 � � x � 16 36 � � 2�
2 � 5 � e � x � 36 � � x � 16 26 � � 2

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

Fig. 2. An example for search.

Note that (2,5.a) has the same effect as the simple propagator for (2,5).
Let us observe the effect of those propagators in the example. The improved propa-

gators for (1,5) infer x � 16 26 � � 1, which makes (2,5.e) infer x � 36 � � 1, giving x36 � 1.
The simple propagator (4,5) then infers x46 � x56 � 0. The propagation of (3,5) and
(1,5) then gives x26 � 1 and x16 � 0.

3.3 A Binary Solver

As we said in Sect. 2, useful information can be deduced from the set of solutions of
the Minesweeper problem. The issue is, there usually are many solutions. Consider the
board in Fig. 2, with dimension 10 � 10, and a total of 20 mines. Four squares have been
played. The corresponding CSP has 3 � 33 � 1018 solutions! Computing all solutions is
simply impossible, except for very small boards.

Though, that issue can be addressed. We simply restrict the problem to some of
its variables. Each solution of the restricted problem defines a class of solutions of the
full problem1. In the example, only the variables x12, x22, x23, x33, x41, x42, and x43

are relevant. The remaining unknowns can be determined by other simple means. The
solutions of the restricted problem are given in Table 1. If we consider the solution s1

in the table, there remains 89 unknowns, out of which 17 must be mined. The number
of ways to choose 17 elements out of 89 is given by the binomial � 89

17 � . This is the size
of the class of solutions defined by s1. We can now compute the sum of the elements
in this class. For instance, the sum of the x12’s is 0, because they are all equal to 0. In
the same way, the sum of the x22’s is � 89

17 � . And the sum of the x15’s is � 88
16 � � 17

89 � 89
17 � .

Computing all restricted solutions, and summing them all, we obtain a probability for
each square. We thus find that the probability that x12 � 1 is 0 � 318.

1 The word “class” is used with the meaning of “subset” here. The subset we consider is actually
an equivalence class in the set of solutions.

solution s1 s2 s3 s4 s5 s6 s7 s8 s9

x12 0 0 0 1 1 1 1 1 1
x22 1 1 1 0 0 0 0 0 0
x23 0 1 1 0 1 1 0 1 1
x33 1 0 1 1 0 1 1 0 1
x41 0 0 0 0 0 0 1 1 1
x42 0 0 0 1 1 1 0 0 0
x43 1 1 0 1 1 0 1 1 0

class size � 89
17 � � 89

17 � � 89
17 � � 89

16 � � 89
16 � � 89

16 � � 89
16 � � 89

16 � � 89
16 �

Table 1. Solutions of the restricted binary problem.

3.4 The Set Solver

The binary solver still computes too many solutions. In the example, one can see that
the problem has symmetries. For instance, each permutation of the values of x23, x33,
x43 in one solution leads to another solution. This symmetry comes from the fact that
those three variables are constrained by x23 � x33 � x43 � 2 only.

The improved solver reformulates the CSP in terms of the set variables xI in order
to eliminate those symmetries. Taking all equations that define the binary problem, it
computes a partition of the variable’s indices. Every subset I in the partition is such
that, for each equation xJ � k in the problem, I � J � I or /0. The subsets are chosen to
be maximal, so that symmetries are eliminated.

The CSP of Fig. 2 is given by

∑i j ��� 1 � � �� 10 � xi j � 20

x11 � x21 � x31 � x32 � 0�
1 � 1 � x12 � x21 � x22 � 1�
2 � 1 � x11 � x12 � x22 � x31 � x32 � 1�
3 � 1 � x21 � x22 � x32 � x41 � x42 � 1�
3 � 2 � x21 � x22 � x23 � x31 � x33 � x41 � x42 � x43 � 3

The partition of the indices is

P �! � 11 �"��� 12 �#�$� 21 �"��� 22 �"�$� 31 �"��� 32 �#�$� 41 � 42 ���$� 23 � 33 � 43 ��� R %&�
which gives the reformulated problem

∑I � P xI � 20

x � 11 � � x � 21 � � x � 31 � � x � 32 � � 0�
1 � 1 � x � 12 � � x � 21 � � x � 22 � � 1�
2 � 1 � x � 11 � � x � 12 � � x � 22 � � x � 31 � � x � 32 � � 1�
3 � 1 � x � 21 � � x � 22 � � x � 32 � � x � 41 42 � � 1�
3 � 2 � x � 21 � � x � 22 � � x � 31 � � x � 41 42 � � x � 23 33 43 � � 3

This problem has two solutions, given in Table 2. Each class of solutions is the prod-
uct of the possible combinations of the set variables of the reformulated problem.
Each valuation xI � k has � nk � solutions, where n is the size of I. Therefore the size
of each class is given by a product of binomials. The computation of the probabili-
ties is similar to what the binary solver does. For instance, the mean value of x41 is� 0

2 N1 � 1
2 N2 �(' � N1 � N2 � � 0 � 158879.

solution s1 s2
x) 12 * 0 1
x) 22 * 1 0

x) 41 + 42 * 0 1
x) 23 + 33 + 43 * 2 2

xR 17 16
class size N1 N2

N1 , � 10 � � 11 � � 20 � � 32 � � 89
17 �

N2 , � 11 � � 10 � � 21 � � 32 � � 89
16 �

Table 2. Solutions of the reformulated problem.

The efficiency is typically one order of magnitude faster compared to the binary
solver. Let us illustrate this with an example. Figure 3 shows a snapshot of the applica-
tion’s window. The squares containing a mine have been marked with a black disk. The
probabilities are drawn as filled rectangles in the squares. The more a rectangle is filled,
the greated the mine probability. A precise value of a probability is shown in the bottom
right of the window when the player moves its mouse cursor over a given square. The
set solver has computed 6 solutions to find the probabilities, while the binary solver
would search for 246 solutions for the same problem!

Fig. 3. A snapshot showing probabilistic information.

4 Architecture of the Application

The general architecture of the Oz Minesweeper is depicted in Fig. 4. Boxes refer to
concurrent agents (active objects), while “Symbolic field” and “Symbolic constraints”
are simply shared data. Arrows from data to agents (resp. from agents to data) cor-
respond to ask (resp. tell) operations. Arrows between agents represent messages or
procedure calls. The removal of the components in the dashed box gives an implemen-
tation of the game without digital assistance.

Symbolic
field

Game -

User
interface...... / play 0

Autoplayer

...... /0
play

Zero
propagator

0 1 Constraint
collector- - Symbolic

constraints

Propagators

12222222222 3

Solvers04 show probabilities 5555555555 6

Fig. 4. Dataflow diagram of the Oz Minesweeper.

4.1 The Core Components

The central point in the application is the symbolic field, which simply reflects the in-
formation known about the mine field. The symbolic field is basically a matrix whose
entries can be either safe(K) or mine(X). The value safe(K) means that the correspond-
ing square is not mined, and K gives the number of mines in the surrounding squares.
Note that K can be unbound, if the square is known to be safe, but has not been played
yet. The value mine(X) means that the square is mined, and X is bound to exploded if
the mine has exploded, i.e., the game is over.

The user interface updates the board by threads that synchronize on the symbolic
field. For instance, if an entry in the symbolic field is safe(K) and K is unbound, the
square is marked with a dash “-”. This shows the user that this square is safe. As soon
as K is determined, its value is shown in the square, which becomes inactive. When the
user clicks on a square, the user interface calls the game agent to play that square. The
game automatically tells the result in the symbolic field, which wakes up the thread that
updates the square.

4.2 The Zero Propagator and Autoplayer

The zero propagator simply asks and tells information in the symbolic field. If a square
has no mines around it, which correspond to value safe(0) in the symbolic field, the

surrounding squares are told to be safe. The code of the propagator is shown below.
The symbolic field appears as the tuple SymField. The procedure WaitEnabled blocks
until the user enables the propagator. The same mechanism is used by all inference
engines, and allows to user to experiment with them. The call to function BoxI returns
the coordinates of all the squares in a box around square I.

for I in 1..{Width SymField} do
thread

case SymField.I of safe(0) then
{WaitEnabled}
for J in {BoxI I 1} do SymField.J = safe(_) end

else skip end
end

end

The autoplayer works in a similar way. When enabled, it plays all the squares known
to be safe in the symbolic field. So the user can let the various inference engines discover
safe moves, and decide whether they should be played automatically.

4.3 The Constraint Inference Engines

The constraint collector incrementally builds the symbolic constraints, a list of the con-
straints that appear implicitly in the symbolic field. The inference engines using con-
straint programming simply read this list to get the constraints of the current problem. A
constraint in the list has the form sum(Is K), where Is is a list of square coordinates, and
K is a nonnegative integer. Its semantics is the equation ∑i � Is xi � K. All the constraints
in the Minesweeper problem can be written in this way.

Both the simple and set propagators read the symbolic constraints and progressively
post simpler propagators as explained in Sect. 3. Those propagators are posted on lo-
cal binary constrained variables, and told in the symbolic field when determined. The
translation for each square is done by a statement like

SymField.I = case X.I of 0 then safe(_) [] 1 then mine(_) end

Recall that the set propagator for an equation ∑i � I xi � k considers all partitions of I,
and reformulates the equation as xI1 �7�����8� xIn � k. If I has 8 elements (the typical case
in the Minesweeper), we thus have 255 set variables and 4140 set equations! Those
numbers are greatly reduced by the actual implementation, which first subtracts the
known xi’s, and thus only considers the coordinates of the unknown squares.

A search with a solver is triggered by pushing a button in the user interface. The
solver first takes the known part of the symbolic constraints list, and solves the problem
given by those constraints. In case new safe moves or mine positions are found, they are
told to the symbolic field. Otherwise, the mine probabilities are shown on the board.

5 Evaluation and Related Work

The Oz Minesweeper has been entirely written in Mozart [2], and is only about 1000
lines long. The digital assistant is capable to find all the safe moves in a given situation.

The set propagator proved to be effective at this task, it usually finds most of them.
The solver rarely finds new moves, and provides mine probabilities instead. It leaves
the player with the toughiest decision, involving a cost-benefit strategy. An interesting
observation we have made is that the proportion of mined squares should be around
20% to make the game interesting. A proportion less than 20% makes the problem too
easy, while more than 20% quickly makes the game unplayable.

We have found only one other application that solves the Minesweeper problem and
computes the mine probabilities, called Truffle-Swine Keeper [3]. It seems efficient, but
we have found the interaction with the solver not as practical as the Oz Minesweeper.

History. The Oz Minesweeper is born six years ago. It started as a student work, in a
seminar course on constraint programming. The goal was to study this strange language
Oz, and give a presentation on it. I found that the Minesweeper was a good example of
a CSP in the “real world”. And I hacked a small solver that was playing the game.

Later I rewrote it as a demonstration program, and gave it a graphical user interface.
Only the simple propagator was implemented. It already impressed quite a lot of vis-
itors. The next step was the idea of the binary solver. I wrote several implementations
of it, notably by hacking a special search engine. I eventually got the idea of solving
the restricted problem, and came up with mine probabilities. I rewrote everything from
scratch. The hacked special search engine went to the trash can.

The last step happened one year ago. I understood the issue of the symmetries, and
designed the set solver. The set propagator was designed while implementing the set
solver. I reworked a bit the implementation, and integrated the inference engines in a
proper way. I finally improved the user interface the week before submitting this paper.

6 Conclusion

We have designed and implemented a Minesweeper application with a digital assistant.
The latter is based on a simple mathematical model of the Minesweeper game, and
various techniques coming from the field of constraint programming. It proved to be
effective, and is capable to infer every logical consequence of the problem to solve. It
computes mine probabilities without computational burden.

The simplicity and efficiency of our application relies on the language Oz and
the platform Mozart. The dataflow concurrency, symbolic data, and constraint system
makes the application’s architecture modular and elegant.

References

1. Kaye, R.: Minesweeper is NP-complete. Mathematical Intelligencer (2000) See also
http://web.mat.bham.ac.uk/R.W.Kaye/minesw/ordmsw.htm (07/16/2004).

2. Mozart Consortium (DFKI, SICS, UCL, UdS): The Mozart programming system (Oz 3)
(1999) Available at http://www.mozart-oz.org.

3. Kopp, H.: Truffle-swine keeper (2001) Program available at
http://people.freenet.de/hskopp/swinekeeper.html (07/16/2004).

