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Abstract

To determine whether a Minesweeper configuration is consistent was proved

NP-complete by Kaye. Here the complexity of Minesweeper is investigated

and three game playing strategies are developed. The two decision problems:

“Does a configuration have a unique solution?” and “Is a given move safe?”

are proved complete in DP, and the problem of counting the number of so-

lutions to a configuration complete in #P. Three Minesweeper strategies are

presented, the best of which uses probability estimates to assist in guessing

when required. This strategy is capable of winning 25% of games at expert

level. The strategies are implemented in a framework developed specifically

for automated Minesweeper playing.

Keywords: Minesweeper, complexity, DP-completeness, #P-completeness,

game strategy development, probability estimation.



Author’s assessment of the

project

The following is an assessment of the project from the author’s perspective.

• Technical contribution of the project: The project presents three

complexity proofs about Minesweeper which further underpins the the-

oretical foundations of the game. Furthermore a technical description

of game playing strategies is presented.

• Relevance to Computer Science: The project studies an instance

of an NP-complete problem, and formulates related problems along

with proving their relative complexity.

• Use to others: The theoretical results provide insight in what types

of Minesweeper strategies are intractable, and the software is useful for

implementing and analysing more strategies.

• Reason for achievement: The content of the project was technically

challenging and the majority of the work presented is original. Further-

more, Minesweeper is not a commonly studied problem so only limited

literature is available.

• Weaknesses: Several topics were covered so some aspects did not

benefit from an in-depth enough analysis. It is felt that the project

would benefit from a more detailed study of improving the probability

estimation method used.
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Chapter 1

Introduction

Minesweeper is a single player computer game which looks deceptively easy

to play, but developing a method of winning every game is at least as hard

as solving well-known computational problems like SAT and The Travelling

Salesman. Richard Kaye of Birmingham University has recently proved that

determining whether a Minesweeper configuration is consistent with the rules

of the game is NP-complete [7]. This result means that the ability to play a

perfect game of Minesweeper would solve an entire group of computationally

hard problems along with one of the biggest open problems in contemporary

mathematics, P=NP? This problem is one of the seven millennium problems

that are intended to shape the direction of mathematical research in this

century, and a solution to P=NP? would claim a $1000000 prize from the

Clay Institute of Mathematics [17]. It is also exciting to know that a simple

computer game like Minesweeper could hold the key to solving one of the most

important open problems in modern mathematics and theoretical computer

science.

This project uses Kaye’s results as a platform for a study of some decision

problems closely related to playing Minesweeper. Initially the configurations

used by Kaye are studied and later new configurations, such as or and xor

gates, are developed to suit specific needs in theorem proving such as ensuring

that a configuration has a unique solution, a property not held by Kaye’s and
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2 CHAPTER 1. INTRODUCTION

gate. The investigation of Minesweeper configurations and a study of Kaye’s

proof is presented in chapter 3.

The complexity of Minesweeper is explored in chapter 4, where it is proved

that both attempting to identify a safe move on a configuration and to at-

tempt determining whether a configuration has a unique solution are prob-

lems complete in the complexity class DP. Furthermore, the counting prob-

lem of finding the complete number of solutions to any Minesweeper configu-

ration is proved to be #P-complete, a result which means that determining

the exact probability of any square containing a mine is intractable.

Three Minesweeper strategies — single point, limited search, and limited

search with probability estimation — are presented in chapter 5. The best

strategy is limited search with probability estimation, which is capable of

winning 92.5% of the games at beginner level, 67.7% at intermediate level and

25% at expert level. All the strategies have been developed independently

of any other existing strategies, and only one strategy has been identified on

the Internet that is capable of outperforming limited search with probability

estimates on expert level. On both beginner and intermediate levels, no other

strategy has been identified that perform better than both limited search and

limited search with probability estimates.

It is noticeable that only two web pages have been identified concerned

with automated Minesweeper playing and only one of those contain a frame-

work for implementing strategies. Due to the lack of availability of Minesweeper

frameworks capable of implementing an automated player, a Java application

has been developed as part of this project to facilitate this. An abbreviated

documentation of the software development is presented in chapter 6 along

with a concise description of the API for implementing a Minesweeper strat-

egy. Instructions for viewing the source code and executing the application

are provided in appendix A.



Chapter 2

Background

2.1 Minesweeper

Minesweeper is a one-person board game played on a rectangular grid of size

k by l. Let such a game be of size n where n = kl. Also choose m, such

that m < n, to be the number of hidden mines on the grid. Initially all the

squares on the grid are empty, and it is the aim of the game to uncover all

the squares that do not contain a mine and mark (or leave blank) all the

squares containing a mine. At each move the player must either choose an

unlabeled square to ‘probe’ or mark a square as containing a mine. If the

probed square contains a mine the game is over with a loss for the player;

otherwise the number of mines immediately adjacent to it is revealed to the

player in form of a number (0–8). This number will remain the label of the

probed square for the remainder of the game. If the player uncovers the last

square not containing a mine the game finishes with a win for the player.

2.2 The complexity hierarchy

Some background material on the complexity hierarchy is now presented.

The initial topic of NP problems intentionally brief; a very readable intro-

duction is found in Brassard & Bratley [2] and a more formal approach is

3



4 CHAPTER 2. BACKGROUND

presented by Garey & Johnson [3], which also contains a very useful list of

all known NP-complete problems known at the time of publication.

Definition 2.2.1 (Decision problem) A decision problem is a computa-

tional problem requiring a yes/no answer.

Traditionally, NP is the class of decision problems that can be solved in

polynomial time using a non-deterministic algorithm,1 but for the purposes

of this project a more modern definition of NP is used. Informally, a problem

is in NP if a succinct proof of membership exists and it can be verified in

polynomial time. This definition is formalised as follows.

Definition 2.2.2 (NP) NP is the class of decision problems X that admit

a proof system F ⊆ X × Q such that there exists a polynomial p(n) and a

polynomial-time algorithm A such that

• ∀x ∈ X, ∃q ∈ Q.(x, q) ∈ F∧ | q |≤ p(n), where n is the size of x; and

• ∀(x, q) ∈ X ×Q, A can verify whether or not (x, q) ∈ F .

A relatively small group of problems all belonging to NP is believed to

contain the hardest problems in NP. This group of problems is called the

NP-complete problems, and they have the property that if one problem

can be solved in polynomial time then so can the rest. Each NP-complete

problem can be reduced in polynomial time on a Turing machine to each

other; such a reduction is known as a Turing reduction.

Definition 2.2.3 A decision problem X is NP-complete if

• X ∈ NP ; and

• ∀Y ∈ NP Y ≤p
T X.

1See Hopcroft, Motwani & Ullman [4] for an introduction to the non-deterministic
model of computation.
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The original NP-complete problem is Boolean satisfiability (SAT) which

asks: “Given a Boolean formula does it have a satisfying assignment?” This

was proved NP-complete by Steven Cook in the early 1970’s [2].

In order to prove NP-completeness of any decision problem it is thus

enough to reduce a known NP-complete problem such as SAT to it as the

following theorem shows.

Theorem 2.2.4 Let X be an NP-complete problem. Consider a decision

problem Z ∈ NP such that X ≤p
T Z. Then Z is also NP-complete.

Proof. The proof is in Brassard & Bratley [2].

In general, the complement of a decision problem in NP is in the com-

plexity class coNP, which also contains complete problems. For example

the decision problem “given a Boolean formula, does it have no satisfying

assignments?” is the coNP-complete problem which complements SAT. The

complexity class coNP thus contains problems which have a succinct dis-

qualifier.

Definition 2.2.5 (coNP) The set coNP contains those problems that have

short disqualifications, i.e. a “no” instance of a problem in coNP possesses

a short proof of its being a “no” instance; and only “no” instances have

proofs. [12]

A group of problems associated with counting problems rather than de-

cision problems is also useful to consider.

Definition 2.2.6 (#P) Let Q be a polynomially balanced, polynomial-time

decidable binary relation. Its associated counting problem is as follows: Given

x, how many y exists such that (x, y) ∈ Q? [12]

Problems in #P ask questions about the number of solutions rather than

merely the existence of a solution. The class also contains complete problems,

however it is important to note that #P-complete problems are much harder
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to solve than NP-complete problems. Another important issue to mention

is for a problem to be complete in #P, the reduction from a known #P-

complete problem has to be parsimonious, i.e. the number of solutions is

preserved in the reduction. The class #P was introduced by Leslie Valiant

in [19] and some #P-completeness results were presented in [20].

The final complexity class used in this project is the class DP, introduced

by Christos Papadimitriou [11]. DP is primarily concerned with problems

of determining whether a unique solution to a decision problem exists. DP

is not a generally well-known complexity class, and it has been principally

studied by Papadimitriou [12] although some special cases such as Unique

SAT are well documented in the literature [1]. DP is best defined as the

intersection of two formal languages2 as follows.

Definition 2.2.7 (DP) A language L is in the class DP if and only if there

are two languages L1 ∈ NP and L2 ∈ coNP such that L1 ∩ L2 = L.

It is important to note that in general DP 6= NP ∩ coNP, and that DP is

a syntactic class hence containing complete problems, while the class NP ∩

coNP does not [12].

2See [4] for details on formal languages.



Chapter 3

Minesweeper configurations

In this chapter some Minesweeper configurations are presented. Initially the

configurations used by Kaye to prove NP-completeness of Minesweeper are

summarised and then some configurations developed during the course of the

project are detailed. Finally a brief study of the importance of the dimension

of a Minesweeper game is included.

3.1 Review of Kaye’s work

Richard Kaye has recently proved that the following Minesweeper question,

termed the “general Minesweeper problem” [7] is NP-complete by a reduc-

tion from Boolean satisfiability (SAT). In this section the proof of this claim

is studied and used to introduce the exploration of Minesweeper configura-

tions.

We start by defining the general Minesweeper consistency problem, which

will henceforth be referred to as consistency.

Definition 3.1.1 (Consistency) Given a rectangular grid partially marked

with numbers and/or mines, some squares being blank, determine if there is

some pattern of mines in the blank squares that give rise to the numbers seen

[7].

7



8 CHAPTER 3. MINESWEEPER CONFIGURATIONS

Consistency is the decision problem Kaye proved NP-complete. We will

show that the conditions for NP-completeness hold individually although

this is not explicitly done by Kaye.

Theorem 3.1.2 consistency ∈ NP.

Proof. Take as certificate a total function f : X → L where X is the set of

all board positions and L = {0, 1, . . . , ∗} where a number denotes a numeric

label and * denotes an identified mine. Let f(x) = i where i ∈ {0, . . . , 8} that

position x is mine-free and has label i, and f(x) = ∗ denote that position x

contains a mine. Since |X| = n the certificate is polynomial in the input size

and hence short.

Let the verification algorithm A proceed as follows:

1. Place mines and non-mines on the board as defined by f .

2. For each numerically labelled square, check that it has exactly the

correct number of mines adjacent to it.

As A scans each square exactly once the worst case complexity of A is poly-

nomial in n (in fact A ∈ Θ(n)), so both conditions of NP membership are

met.

It is worth noting that the proof is slightly stronger than the original state-

ment, as it both checks the actual configuration for consistency, along with

the empty squares as required by the definition of consistency. Rather

than an explicit proof of theorem 3.1.2 Kaye presented a reduction from an

arbitrary Minesweeper configuration to SAT. This reduction is now sum-

marised.

Consider a three-by-three block of squares as shown in figure 3.1. Let

the predicate am denote “there is a mine at a,” and for 0 ≤ j ≤ 8 let aj

denote “there is no mine at a and exactly j mines adjacent to a.” Define

similar predicates for squares b, c, . . . , i. The rules of Minesweeper allow

the following conditions for the centre square e to be deduced:
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a b c

d e f

g h i

Figure 3.1: A three-by-three block.

. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 .

. x′ x 1 x′ x 1 x′ x 1 x′ x 1 x′ x .

. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 .

Figure 3.2: A Minesweeper wire, X, moving from left to right.

1. exactly one of em, e1, . . . , e8 is true, and

2. for k = 0, 1, . . . , 8, if ek is true then exactly k of am, . . . , dm, fm, . . . ,

im are true.

Each instance of condition 2 can be expressed as a Boolean formula in 90

variables (am, a0, . . . , i8). Conjoining these formulae to a single expres-

sion C it holds that the configuration is consistent if and only if there is a

combination of inputs that satisfy C.

Since NP-membership of consistency has been shown, completeness

can be proved by exhibiting a polynomial Turing reduction from a known

NP-complete problem to it.

The basic building block of the proof is the concept of a ‘wire’ illustrated

in figure 3.2. It is easy to deduce that if x contains a mine then x′ cannot

contain a mine and vice versa; also either x or x′ must contain a mine for

the configuration to be consistent. A wire can ‘carry’ a Boolean value based

on the position of the mines as defined in definition 3.1.3.

Definition 3.1.3 The value represented by a wire is determined by the square

immediately before (using an arbitrary predefined direction) the phase sepa-

rating 1. If this square contains a mine then the value of the wire is true

otherwise it is false.



10 CHAPTER 3. MINESWEEPER CONFIGURATIONS

1 1 1
. 1 1 1 1 1 2 ∗ 2 1 1 1 1 1 .

. x′ x 1 x′ x 3 x′ 3 x x′ 1 x x′ .

. 1 1 1 1 1 2 ∗ 2 1 1 1 1 1 .

1 1 1

Figure 3.3: A not gate.

. . .

1 1 1 1 2 2 1 1 1 1 1 1 1
1 u′ 1 2 ∗ ∗ 3 2 3 ∗ 2 1 2 ∗ 3 2 1
1 u 1 1 2 4 ∗ s x y z t′ 3 t t′ 3 ∗ ∗ 2

1 2 2 1 1 ∗ ∗ 4 ∗ 3 2 3 ∗ 2 1 1 2 t ∗ 2
2 ∗ u′ 2 2 4 s′ 3 1 1 0 1 1 1 0 0 1 2 2 1
2 ∗ ∗ 3 u u′ s 2 1 1 1 1 1 1 1 1 1 t′ 1 1 1 1 .

2 4 5 ∗ 4 ∗ 4 t t′ 1 t t′ 1 t t′ 1 t 2 t 1 t′ t .

2 ∗ ∗ 3 v v′ r 2 1 1 1 1 1 1 1 1 1 t′ 1 1 1 1 .

2 ∗ v′ 2 2 4 r′ 3 1 1 0 1 1 1 0 0 1 2 2 1
1 2 2 1 1 ∗ ∗ 4 ∗ 3 2 3 ∗ 2 1 1 2 t ∗ 2

1 v 1 1 2 4 ∗ r a b c t′ 3 t t′ 3 ∗ ∗ 2
1 v′ 1 2 ∗ ∗ 3 2 3 ∗ 2 1 2 ∗ 3 2 1
1 1 1 1 2 2 1 1 1 1 1 1 1
. . .

Figure 3.4: An and gate.

Kaye showed that wires can be bent, split, and negated; and two wires can

be conjoined. In this summary only the negation and conjunction operators

are included.

The negation of a wire is obtained by reversing the sequence of xs and

x′s as shown in figure 3.3. The not gate is based on the central square

(highlighted) containing x′, and the 3s adjacent to it ensuring that the two

outside squares must be x.

The conjunction operator (figure 3.4) is based around the highlighted

central square containing the label 4, where the two input wires U and V are

crossed and the output T is initialised. The and gate has two internal wires R

and S which are mainly used to ensure consistency around the central square.

Kaye demonstrated the correctness of the and but for brevity the details are
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omitted from this discussion. Note however that the and gate does not have

a unique solution since on the input case where both u and v are mine-

free, and thus t must be mine-free, the configuration is consistent both when

s, x, z, b, c contain mines and when r, a, c, x, y contain mines. Uniqueness is

not required for NP-completeness and thus not considered by Kaye, but is

important for later results in this paper.

The required logic gates have now been defined and Kaye’s can be stated.

NP-hardness is a direct result of the logic circuits and NP-completeness

follows directly. The details are omitted but the interested reader should

consult [7].

Theorem 3.1.4 Consistency is NP-complete.

Proof. See Kaye [7].

3.2 Other important configurations

The logic gates presented in the previous section were used by Kaye to prove

that consistency is NP-complete. Two additional logic gates will now be

presented that have been invented independently of Kaye, although it was

subsequently discovered that similar configurations are known to him [8]. The

important aspect of the two new logic gates is that they both have the unique-

ness property lagged by the and gate which will be required for the derivation

of later results. The following shorthand, v(X) = [x contains a mine] with

reference to the standard representation of a wire in figure 3.2, will be used

to justify the correctness and uniqueness of the two logic gates.

The first configuration is the disjunction of two wires shown in figure 3.5.

The configuration is based around the highlighted square labelled 6, where

the two input wires U and V are crossed. The or gate has output wire T

and an internal wire S which loops back onto T to ensure consistency. To

prove that this configuration simulates an or gate each of the three1 possible

input combinations are considered.

1Note that the two input combinations representing input wires with different truth-
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1 2 2 1 1 2 3 2 1
. 1 1 1 2 ∗ ∗ 3 1 1 ∗ ∗ ∗ 1
. 1 u′ u 3 u′ ∗ ∗ 2 2 3 t′ 3 2 1 1 1 .

. 2 2 3 3 ∗ 6 t t′ 2 t 2 t 1 t′ t 1 .

. 1 v′ v 2 v′ ∗ s ∗ 5 4 t′ 2 2 1 1 1 .

. 1 1 1 2 ∗ ∗ 6 ∗ ∗ ∗ ∗ 3 1
1 4 ∗ s′ 5 b c t ∗ 2

2 ∗ ∗ a 4 4 ∗ ∗ 2
1 3 ∗ ∗ ∗ 2 2 2 1

1 2 3 2 1

Figure 3.5: An or gate.

Case 1: v(U) = v(V ) = true. The squares labelled u and v contain mines

and the ones labelled u′ and v′ do not. From the highlighted square both s

and t must contain mines in this case. From the implied value of S it can

be inferred that a and b must contain mines while c cannot, which implies

that t must be a mine. This is consistent with its known value, and hence

the configuration is consistent on this input.

Case 2: v(U) = v(V ) = false. The squares u′ and v′ contain mines so s

and t must be mine-free. From the value of S, b and c must contain mines,

and thus t cannot contain a mine. Hence, the configuration is consistent on

this input combination.

Case 3: v(U) 6= (V ). In this case we deduce from the highlighted square

that either s or t — but not both — must contain a mine. If s contains a

mine, then both a and b must contain mines. But this implies that t also

contains a mine which is impossible. However, if t contains a mine then a

and c contain mines which implies that s cannot contain a mine. Hence, the

configuration is consistent and it simulates an or gate correctly.

In showing the correctness of the or gate it was evident that exactly one

valid assignment of mines and non-mines to the squares labelled with letters

existed for each input combination. This means that the or gate is unique

in the sense that given any input combination both the output and the state

values only constitute one input case when demonstrating the correctness of the configu-
ration.
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1 2 2 1
. 1 1 2 ∗ ∗ 3 1
. 1 v′ v 5 ∗ ∗ 2 1 1
. 1 1 3 ∗ v′ 5 4 ∗ 2 1 1 .

. 1 1 4 ∗ v ∗ ∗ 4 t′ t 1 .

. 1 u′ u ∗ u′
6 t ∗ 3 1 1 .

. 1 1 3 4 ∗ s s ∗ 2
2 ∗ 6 ∗ ∗ 4 2
3 ∗ s′ ∗ s′ ∗ 2
2 ∗ 6 s 6 ∗ 2
1 2 ∗ ∗ ∗ 2 1

1 2 3 2 1

Figure 3.6: A xor gate.

of all squares in the configuration is known.

The other logic gate configuration is the xor gate shown in figure 3.6. The

xor gate is centred around the highlighted square labelled 6 and contains an

internal wire S which loops back upon itself to ensure that either zero or two

squares are mines around the central square. Due to the asymmetric nature of

the configuration (v and u′ border the central square) all four possible input

cases need to be considered separately to prove correctness and uniqueness

of the xor gate.

Case 1: v(U) = v(V ) = true. In this case v contributes one mine to the

neighbourhood of the central square and u′ contributes none, so two extra

mines are required. Thus s must contain a mine and t is mine-free which is

the correct value.

Case 2: v(U) = v(V ) = false. In a similar fashion to case 1 u′ contributes

one mine to the neighbourhood of the central square and v contributes none,

so two extra mines are required. Thus s must contain a mine and t is mine-

free which is the correct value.

Case 3: v(U) = true, v(V ) = false. In this case neither v or u′ contain

mines so three mines are required around the highlighted square. This is

only satisfied when both s and t contain mines and thus the output is true

as required.

Case 4: v(U) = false, v(V ) = true. In this case both v and u′ contain
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2 2 2 2
2 2
2 2
2 2 2 2

Figure 3.7: Determine the positions of all mines.

mines so only one mine can be placed adjacent to the highlighted square.

Thus s must be mine-free while t contains a mine and the output is true as

required.

Obviously the logic gate configurations are not very likely to occur when

playing Minesweeper; they are merely theoretical configurations that provide

insight into the complexity of the game. A configuration of which variations

are more frequent will now be considered. Furthermore, it is a nice puzzle

since it can be solved from the information provided, although not with-

out some analysis. The configuration, which is also presented by Kaye [7],

is shown in figure 3.7. One way to solve this configuration is to exhaus-

tively search through all possibilities using a straightforward backtracking

algorithm, which is feasible since the example is relatively small. Without

further insight a mine could be placed at the upper left corner and then other

mines and mine-free squares systematically placed around it, backtracking

when an inconsistency arises. Within three iterations it is easily concluded

that the top left square cannot contain a mine, and similar conclusions can

be made regarding its neighbours, effectively solving the configuration. This

configuration will be used at a later stage when testing our implemented

strategies.

3.3 NP-completeness of n-dimensional Minesweeper

To conclude this chapter on Minesweeper configurations the effect of the

dimension of the playing area on the NP-completeness of consistency is
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examined. The following definition is useful for this discussion.

Definition 3.3.1 (n-consistency) Given an n-dimensional grid partially

marked with numbers and/or mines, some squares being blank, determine

if there is some pattern of mines in the blank squares that give rise to the

numbers seen.

It is intuitive that by adding extra dimensions to the playing area the game

becomes harder, so it would be expected that 3-consistency is NP-hard.

In fact, n-consistency is NP-complete for any n ≥ 2. An interesting

situation arises however when reducing the dimension to one, since it is

not immediately clear how to construct logic gates as in the 2-dimensional

variation. It turns out that 1-consistency can be solved in polynomial time,

and we present a Deterministic Finite Automata (DFA) that accomplishes

this task.

3.3.1 n-dimensional Minesweeper is NP-complete

n-consistency can be inductively reduced to (n + 1)-consistency. At a

high level, the reduction is to construct a wire, an and gate and a not gate

by ‘padding’ the existing configuration with mines and increasing the labels

appropriately to ensure consistency. Finally, the required labels around the

outer layer of mines are added.

Theorem 3.3.2 n-Consistency ∈ NP, when n ≥ 2.

Proof. (Outline) The 2-dimensional case proved in theorem 3.1.2 generalises

to n-dimensions. The certificate is an assignment of mines and mine-free

squares to the n-dimensional board that is consistent with the configuration,

and the same verification algorithm is correct.

Theorem 3.3.3 n-Consistency is NP-hard, when n ≥ 2.



16 CHAPTER 3. MINESWEEPER CONFIGURATIONS

Proof. Induction on n. Base case n = 2. 2-consistency is NP-hard by

theorem 3.1.4.

Inductive step. Assume n-consistency is NP-hard through a reduction

to SAT via a simulation of logic gates. An extra dimension is added by

extending each of the existing n-dimensional configurations as follows. For

each cell x in the (n + 1)st dimension that is adjacent to a labelled cell in

the nth dimension a mine is placed on x and the label of each cell in the

nth dimension adjacent to x is incremented by one. Then add appropriate

label to all cells in the (n + 1)st dimension neighbouring a mine, and by

construction, the (n+1)-dimensional configuration is consistent and exhibits

the same behaviour as the n-dimensional configuration. The reduction is

polynomial in the size of the game board and constant in n. Hence, by

induction n-consistency is NP-hard for all n ≥ 2.

Finally the two results are combined to prove NP-completeness.

Theorem 3.3.4 n-consistency is NP-complete for n ≥ 2.

Proof. NP-membership is proved in theorem 3.3.2 and hardens in theorem

3.3.3.

3.3.2 1-dimensional Minesweeper can be solved in poly-

nomial time

A slightly more interesting result is now presented, namely that 1-consistency

can be solved in polynomial time. A DFA will be used to demonstrate this

result since its property of representing a finite number of states is required.

The conversion into a Turing machine or an arbitrary high-level programming

language using a set of variables is however implicit.

Before the DFA is described some properties of 1-dimensional Minesweeper

are considered. Let a 1-dimensional Minesweeper game consist of a sin-

gle string of input symbols encapsulated within the letter s, hence the in-

put alphabet is Σ = {0, 1, 2, b, ∗, s} where the numbers indicate labels on
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Figure 3.8: The Minesweeper configuration corresponding to the string
s1*b2b0s.

1 ∗ 2 0

squares, b indicates a blank square and ∗ the presence of a mine. For an

example of this notation see figure 3.8 which shows the Minesweeper config-

uration corresponding to the string s1*b2b0s. Since any square can have

at most two neighbours, all the possible inconsistencies that could arise

can be easily listed. A ‘simple’ inconsistency is a string from the alpha-

bet Σ′ = {0, 1, 2, ∗} which is inconsistent with the rules of the game. It is

clear that any inconsistency is at most three symbols long, and that all incon-

sistencies are symmetric. The simple inconsistencies (omitting symmetries)

are: {02,12,22,0*,111,110,010,*1*}.

It is clear that purely detecting simple inconsistencies does not determine

the consistency of a configuration. Consider the configuration ∗1b2 which

is inconsistent but not directly detectable using the simple inconsistencies.

However, when scanning the string from left to right it is clear that the b

should be replaced either with a 0 or a 1 in order for the first size three sub

string to be consistent, since replacing it with any other value would create

one of the listed inconsistent sub strings. Suppose the b is replaced by a 0;

this creates the string ∗102 which contains the simple inconsistency 02 as a

sub string. Similarly, replacing the b with 1 would produce the inconsistent

sub string 12. Seeing that sub strings of at most three symbols need to be

recognised, only the previous two symbols and assignments to b need to be

recorded.

We will keep track of the previously scanned symbols using the states

of a DFA. Note that the symbols 0, 2, and ∗ are absolute in the sense that

information about the previous symbol is not required to determine whether

the next symbol will cause an inconsistency. To avoid confusion between

symbols of the alphabet and states, the absolute states above will be named

Z, T , and M respectively. Special attention to the first and last symbol
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scanned is required in order to determine start and end inconsistencies, but

this is an easily implemented technicality. Once a simple inconsistency is

detected, the DFA will move into a non-accepting state E from which all

transitions are to that same state, and the DFA will eventually terminate

and reject the input string. The DFA has exactly one accepting state OK

which is only reached after scanning the second s; if more symbols are scanned

following transition to OK the DFA will move into state E and reject the

input.

The DFA is now described and its correctness proved. Let A = (Q, Σ, δ, ST, F ),

where Σ = {s, 0, 1, 2, b, ∗}, Q = {ST, S, Sb, S1, Z, T, M, 01, ∗1, b1, bb, 0b, ∗b, E, OK}

and F = {OK}. The states are derived from the preceding discussion of

possible sub strings, and represent the previous two scanned symbols with

assignments to blank squares where appropriate. The transition function δ is

defined from the previous discussion of state interdependency and is shown

in table 3.1, as the schematic representation is more readable than the cor-

responding set notation. Note that in order to reduce the number of states,

some semantically equivalent states are merged. For example if A is in state

∗1 and scans a 1 then the next symbol must be either b or ∗ for the input

string to be consistent. But this is the behaviour implemented by the state 01

and thus introducing a new state is not required. Similarly if a b is scanned

rather than a 1, it is clear that b cannot be assigned a mine since this would

create the sub string ∗1∗, thus the behaviour implemented in the state 0b is

required.

The correctness of A is now proved and its complexity determined to

justify the claim that 1-consistency can be solved in polynomial time.

The proof is an outline since a complete proof would need to consider each

input case separately, but this is omitted for brevity.

Theorem 3.3.5 A solves 1-consistency.

Proof. (Outline) Induction on the input size, n. Base case, n = 2. The only

acceptable input string of length two is ss. By construction, the DFA will

only accept this one string of length two.
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Table 3.1: The state transition function δ.

δ 0 1 2 b * s

ST E E E E E S

S Z S1 E Sb M OK

Sb Z b1 T bb M OK

S1 E E E M M E

Z Z 01 E 0b E OK

T E E E M M E

M E ∗1 T ∗b M OK

01 E E E M M E

∗1 Z 01 E 0b E OK

b1 Z 01 E bb M OK

bb Z b1 T bb M OK

0b Z 01 E bb M OK

∗b Z b1 T bb M OK

E E E E E E E

OK E E E E E E

Inductive step. Suppose the n-symbol string sx1x2 . . . xn−3xn−2s is consis-

tent. Now consider the (n + 1)-symbol input string sx1x2 . . . xn−3xn−2xn−1s.

By the inductive hypothesis this string is consistent up to the sub string

xn−4xn−3xn−2 and so it can only be inconsistent if one or both of the sub

strings xn−3xn−2xn−1 and xn−2xn−1s are inconsistent. The two cases are

considered separately.

Case 1. Detecting an inconsistency in the sub string xn−3xn−2xn−1 is done

by construction, since all possible inconsistencies of size three sub strings are

known. If an inconsistency is detected in this sub string, A will move into

the non-accepting state, and hence the string is rejected.

Case 2. Detecting an inconsistency in the sub string xn−2xn−1s is a tech-

nical variation of detecting an inconsistency in a ‘normal’ sub string. A has

been constructed to detect these end-inconsistencies.

Hence, by construction A will only accept strings where all sub strings

are consistent, and by induction it only accepts consistent input strings.
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The worst-case performance of A is A ∈ Θ(n) since it scans each input

symbol exactly once and does no backtracking. A variation of consistency

that can be solved in polynomial time has thus been identified, but this

variation is not known to be NP-complete.



Chapter 4

The complexity of Minesweeper

In this chapter Kaye’s NP-completeness result for Minesweeper is extended

by studying the inherent complexity of playing Minesweeper rather than

simply the structure of the game. Some more natural questions about game

playing will be asked and results will be presented in sequential order, con-

tinuously drawing from the results of the previous sections.

4.1 Basic definitions

Before considering the specific Minesweeper questions it is important to

clearly define the notion of a configuration used in the previous chapter.

Also recall the definition of consistency (definition 3.1.1).

Definition 4.1.1 (Configuration) A Minesweeper configuration is a grid

(usually rectangular) partially marked with numbers and/or mines and some

squares remaining blank.

Henceforth a solution to a configuration will be termed an explanation in

order to obtain a more precise and natural terminology that will become

useful.

Definition 4.1.2 (Explanation) An explanation for a configuration B is

an assignment of mines to the empty squares of the grid that gives rise to B.

21
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4.2 Finding a unique solution

The first Minesweeper question examined is a natural one that most Minesweeper

players would consider on a regular basis: Is the information provided on the

board sufficient to determine the positions of all remaining mines? Using

the terminology of this paper we are interested in, given any configuration

to determine whether it has a unique explanation. The decision problem

solution encapsulates this question.

Definition 4.2.1 (Solution) Input. A configuration B.

Output. If there exists a unique explanation of B, output “yes”. Else, output

“no”

4.2.1 A counting argument

It is clear that solution is exactly equivalent to asking whether a configu-

ration has exactly one explanation, and thus if the number of explanations

could be determined efficiently, this would solve solution. The first attempt

at determining the complexity of solution will make use of the following

counting problem associated with consistency.

Definition 4.2.2 (#Consistency) Input. A configuration B.

Output. The number of explanations of B.

We now prove that #consistency is at least as hard as any problem in

#P.

Theorem 4.2.3 #Consistency is #P-complete.

Proof. Reduction from the #P-complete problem #SAT [12]. Since the

disjunction and negation operator together are sufficient [9] to specify a logic

language (i.e. all other logic operators can be obtained from combinations of

or and not) the following reduction applies:

1. Convert an instance S of #SAT to an equivalent instance S ′ containing

only negation and disjunction of variables using identities such as A ∧

B ≡ ¬(¬A ∨ ¬B).
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2. Convert S ′ to a Minesweeper configuration using the gadgets in figure

3.3 and 3.5.

It was showed in the previous chapter that the or gate is unique and hence

preserves the number of solutions between a logic formula and a Minesweeper

configuration. By inspection the same holds for the not gate so the reduction

is parsimonious as required for #P-completeness.

A final technicality required is to ensure that the crossing of two wires

preserves the number of solutions. Kaye showed that two wires can be crossed

using three xor gates [7] and since it was showed that the xor gate in figure

3.6 is unique the number of solutions is also preserved when crossing wires.

Thus the number of solutions of the associated Minesweeper problem is

the same as the number of satisfying assignments of S ′ and thus S. Hence

#SAT can be solved in polynomial time if #consistency can be solved in

polynomial time.

The initial argument showed that solution is equivalent to determin-

ing whether the number of explanations of a configuration equals one, but

by theorem 4.2.3 finding the number of explanations is #P-complete. It

will be shown subsequently that solution is easier than #consistency

although it is still a hard problem. The #P-completeness result for #con-

sistency was included as it will be an important constraint when attempting

to approximate the probabilities of each square containing a mine during the

development of Minesweeper strategies.

4.2.2 A more direct approach

It will now be proved that solution is DP-complete and thus easier than

#consistency. From definition 2.2.7 two languages L1 ∈ NP and L2 ∈

coNP such that all “yes” instances of solution is L1 ∩ L2 need to be

exhibited to prove membership of DP.

Theorem 4.2.4 Solution ∈ DP.
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Proof. Define L1 and L2 as follows: L1 = {X| There exists an explanation

of X} and L2 = {X|X has at most 1 explanation}. L1 ∈ NP by theorem

3.1.2. To see that L2 ∈ coNP note that it has a succinct disqualification:

namely two different explanations of X. Since two explanations is only larger

than a single explanation by a constant multiple the combination of two it

remains polynomially short and thus L2 ∈ coNP.

Hence we have L1 ∈ NP and L2 ∈ coNP. L1 and L2 were constructed

such that their intersection is the language defined by solution since L1

ensures that at least one explanation exists and L2 that at most one ex-

planation exists, i.e. L1 ∩ L2 only contain configuration with exactly one

explanation. Thus solution ∈ DP.

The DP-complete problem unique SAT [12] is now used to show that

solution is DP-complete. Unique SAT is the following computational

problem: Given a Boolean formula φ, is there exactly one satisfying assign-

ment of truth values to the variables?

Theorem 4.2.5 Solution is DP-complete.

Proof. By theorem 4.2.4 solution ∈ DP. Unique SAT is reduced to

solution using a method analogous to the reduction used in theorem 4.2.3.

The technical details are similar so only an outline is given here.

1. Convert an instance S of unique SAT to an equivalent instance S ′

containing only negation and disjunction of variables using identities

such as A ∧B ≡ ¬(¬A ∨ ¬B).

2. Convert S ′ to a Minesweeper configuration using the gadgets in figure

3.3 and 3.5.

It was proved in theorem 4.2.3 that this reduction is parsimonious which

completes the proof.

Theorem 4.2.5 is an interesting result since it shows that solution is

an easier problem than #consistency but generally believed to be harder
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than NP-complete problems like consistency, although this last claim is

not yet proved correct.1

4.3 Finding a strategy

In the previous section the question about directly determining the positions

of the remaining mines on a configuration was considered. Another interest-

ing — and perhaps more urgent in game playing — problem is considering

whether a safe move exists. This problem can be used to find a sequence of

moves resulting in solving the configuration by once a safe move has been

found considering all the possible configurations that could arise from per-

forming that move.

In order to reason formally about changing a configuration, a precise

definition of a move is required.

Definition 4.3.1 (Move) A move M is a pair (x ∈ X, m ∈ {0, 1}) where

X is the set of all positions in a configuration such that

• M = (x, 0) means ‘probing’ square x; and

• M = (x, 1) means placing a mine on square x.

Since a move on a given square is defined by a Boolean variable, the comple-

ment of a move can be easily defined.

Definition 4.3.2 (Move complement) The complement of a move M =

(x, m) is (x, 0) if m = 1 and (x, 1) if m = 0.

A natural question to ask when playing Minesweeper is thus whether any

given move is safe, i.e. performing it cannot result in an immediate loss.

Definition 4.3.3 (Move safety) Move safety is defined explicitly for the

type of each move:

1See [12] for a more in-depth account of the relative position of DP-complete problems
in the complexity hierarchy.
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• A move (x, 0) is safe from a configuration B if B has no explanations

with a mine on x.

• A move (x, 1) is safe from a configuration B if no explanations of B

have x mine-free.

The decision problem safety can now be defined, and it is interestingly in

the same complexity class as solution.

Definition 4.3.4 (Safety) Input. A configuration B and a move M .

Output. If M is safe from B return “yes”, otherwise return “no”.

Before DP-completeness of safety can be proved the following interim

theorem is required.

Theorem 4.3.5 If S = {X|PS} and R = {X|PR} are languages in NP with

associated verification algorithms AS and AR then S ∪R ∈ NP.

Proof. Let L = S ∪ R, thus L = {X|PS ∨ PR}. Both S and R must emit

a proof system to satisfy the definition of NP. Let these proof systems be

FS ⊆ X ×QS and FR ⊆ X ×QR respectively. The proof system of L is then

F ⊆ X × (QS ×QR). A certificate of L is by definition a pair of polynomial

length certificates, and hence polynomial in the input size.

The verification algorithm AL needs to determine whether (x, (q1, q2)) ∈ F

and is defined as follows: AL = (x, q1) ∈ FS ∨ (x, q2) ∈ FR. We can use AS

and AR to determine the two terms of the disjunction in polynomial time by

definition, so AL must also be a polynomial time algorithm.

Thus, L emits a proof system consisting of succinct certificates and a

polynomial time verification algorithm AL. Hence, L ∈ NP.

DP-completeness of safety is now proved by a reduction from solu-

tion.

Theorem 4.3.6 Safety is DP-complete.



4.3. FINDING A STRATEGY 27

Proof. Firstly membership of DP is required. Consider the languages S =

{(B, (x, 0))|B has an explanation with x mine-free} and R = {(B, (x, 1))|B

has an explanation which contains a mine at x}. Both S and R are in NP

since they both contain a short certificate of a “yes”-instance that can be

efficiently verified, namely a configuration that satisfies the predicate part of

the language definition. Define L1 = S ∪R, thus L1 ∈ NP by theorem 4.3.5.

Now consider the language L2 = {(B, M)|B is safe from M}. L2 ∈ coNP

since it has a succinct proof of a “no”-instance, and no “yes”-instances have

such proofs. The disqualifier is an explanation of B where the complement

move of M has been performed. To see that this does in fact disqualify

an instance from being in L2 note that if a move is guaranteed to be safe,

then the complement of the move (i.e., putting a mine instead of ‘probing’

a square or vice versa) must produce an inconsistent configuration (i.e. not

an explanation), since otherwise the original move would not be safe.

Now L1 ∩ L2 is the set of configuration-move pairs (B, M) such that

performing M results in a consistent configuration and M is guaranteed

to be safe. This encapsulates the desired properties of safety and hence

safety belongs to DP.

To prove DP-completeness of safety we reduce to it the known DP-

complete problem solution (definition 4.2.1 and theorem 4.2.5). The re-

duction proceeds as follows:

solution(B)

for each unknown square s ∈ B

b1 = safety(B, (s, 1))

b2 = safety(B, (s, 0))

(1) if b1 = b2 then

output “no”

(2) else if b1 = “yes” then

place a mine on square s

(3) else

probe square s
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end for

(4) output “yes”

This reduction is linear in the board size as it considers each unknown square

exactly once. To complete the proof a number of issues need to be considered

to show the correctness of the algorithm.

Firstly consider line (1). It is important to notice that both b1 and b2

cannot be “yes” since no configuration exists where it is safe to both probe

and place a mine on the same square. Thus if b1 = b2 then both b1 and

b2 must be “no”, and thus from the definition of safety the information

provided on the entire board is not sufficient to find a safe move on square s.

If a square s exists for which it cannot be determined whether s contains a

mine or is mine-free this implies that although the configuration must have

at least two explanations, one which contains a mine on s and one which has

s mine-free. Thus the reduction correctly outputs “no” when such a square

is identified.

If no square is identified by line (1) for which it cannot be determined

whether or not it contains a mine it is clear that the value of all squares

is known. In this case the only explanation of B has been identified (and

the assignments are represented in B from lines (2) and (3)) and thus the

reduction should return “yes” as correctly done on line (4). To see that this

is in fact the correct behaviour notice that “yes” is only returned once all

squares on the board have been checked, and no square found where the

assignment of mine or mine-free is unknown.

Thus as the above argument shows the correctness of the reduction, the

proof is complete and safety is DP-complete.

Since questions of game playing have been the theme of this chapter

it is interesting to note that the assignment of mines and non-mines in

lines (2) and (3) of the reduction are not technically required, however they

are included to provide an illustration of the possible implementation of a

Minesweeper strategy. The complexity of both solution and safety have
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an important impact on the types of Minesweeper strategies that can rea-

sonably be implemented and knowing these bounds is useful when designing

strategies.



Chapter 5

Minesweeper strategies

This chapter covers the development of the Minesweeper strategies invented

for this project. The three strategies, Single point, Limited search, and

Limited search with probability estimation will be described in increasing

order of success and a performance analysis of each will be undertaken.

5.1 General remarks

5.1.1 The consequences Minesweeper’s complexity

In the last chapter it was proved that both finding the position of the re-

maining mines on the board and determining whether a given move is safe

are DP-complete problems. The implication of the first result is clearly that

determining the explanation of the configuration at any given time in an in-

tractable problem and hence this cannot be implemented in a strategy. The

second result means that the strategy of considering each square in turn and

checking whether either placing a mine or leaving it mine-free is a safe move

is also intractable. This hypothetical strategy would effectively be an imple-

mentation of the reduction from theorem 4.3.6 and would perform optimally,

since whenever a safe move existed it would be identified and performed, and

thus a guess would only be made when no safe move existed on the configu-

ration. The complexity results thus imply that considering the entire game

30
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board at each move is intractable and strategies methods for reducing the

search area need to be considered if a complete search needs to be performed

while remaining tractable.

5.1.2 The objectives of Minesweeper strategies

The intentions and objectives for the development of Minesweeper strategies

are now clarified. To aid this discussion the notion of a perfect game is defined

as a game in which the player takes no unnecessary risks by making a guess

rather than utilising the available information to deduce a safe move. Clearly

playing a perfect game is intractable since it requires using the DP-complete

problem safety and thus the developed strategies are not intended to play

perfect games. Rather we aim to approximate perfection by requiring that

each strategy is perfect within its local area, meaning the part of the game

surface being considered. The objective thus becomes to develop strategies

with maximal probability of winning an arbitrary game through improving

the methods of utilising as much information as possible while maintaining

tractability of the strategy.

An approach to solving the non-trivial configuration in figure 3.7 has

been previously considered. For an experienced human player, there are sev-

eral useful techniques that can improve the problem-solving performance1

through limiting the interest area and recognising previously solved parts of

a configuration.2 Otherwise it may be inferred that the solution is symmetri-

cal around the centre of the configuration, which would immediately indicate

that the corner squares are all safe. This type of insight is extremely valu-

able for a human player of Minesweeper, however as it is due to the visual

perception of the board and may not necessarily apply to different situations

it is not attempted to model or implement any such insight. It is expected

however that the best strategies will be able to successfully solve non-trivial

1For a human player the objective is often to obtain a solution in the least possible
time while we are concerned with winning the most games on average.

2See [21] for more details of how to improve a human strategy.
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configurations like figure 3.7.

5.1.3 Evaluation of strategies

The Minesweeper strategies will be evaluated mainly on their probability

of winning an arbitrary game. To this end winning ratios of some existing

Minesweeper strategies are required to use as a benchmark performance. A

thorough search of the Internet revealed a severe lack of such information, as

most serious Minesweeper sites (e.g. [10, 21]) are devoted to the development

of better human strategies, motivated purely by minimising the playing time,

generally at the cost of loosing more games on the average.

One web page devoted to automated Minesweeper playing, The Program-

mer’s Minesweeper Page (PGMS) [15] that presents three strategies, was

identified. Furthermore, Chris Studholme, a Ph.D. student at the university

of Toronto, has implemented a very successful Minesweeper strategy based

on reducing a configuration to a constraint satisfaction problem (CSPStrat-

egy) [18]. Statistics of both his own strategy and the strategies available

from the PGMS are presented by him. The statistics are win ratios at three

different difficulty levels, namely a 10 × 10 board with 10 mines (beginner),

a 16 × 16 board with 40 mines (intermediate), and a 30 × 16 board with 99

mines (expert). The same levels will be tested in this evaluation both to use

Studholme’s results as a benchmark, and because these levels are the stan-

dard levels distributed on most Minesweeper implementations with which

the reader would be familiar. The benchmark performances are as follows:

beginner 80%, intermediate 45%, and expert 34%.

Statistics will be collected by letting each strategy play 1000 sets of 100

games and recording the number of wins for each set. Using this method of

data collection both the average number of wins and variance can be obtained

along with the frequency distribution. Each strategy will also be tested on

several non-trivial configurations such as figure 3.7, and it is expected that

the best strategies will solve most of these.
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5.1.4 The first move

At the beginning of a Minesweeper game the player is presented with a blank

configuration, which means that the first move is forced to be a guess.3 Our

implementation of Minesweeper permits the player to select one of two rules

for the first move: ‘always safe’ or ‘can lose’. As the first-move-safe option is

the most common variation of Minesweeper4 it will be considered the default

rule without making this explicitly clear; also the benchmark statistics are

based on using this rule.

As the first move, a square containing the label “0” will ideally be un-

covered, since that would allow the safe uncovering of all the neighbouring

squares. We now show that the probability of uncovering a square with label

“0” is maximal when by probing a corner square as the first move. Consider

a Minesweeper board of size n which contains k hidden mines. Clearly there

are
(

n−1
k

)

possible explanations since the first move is safe and thus it can

be assumed that the mines are only distributed after the first move has been

performed. The first move can be categorised into three types depending on

the number of neighbours it has: corner move (3 neighbours), border move

(5 neighbours), other move (8 neighbours). The number of explanations to

each type of move will be considered in turn.

Assume that the move is a corner move, then we need to fix the three

adjacent squares and distribute the k mines in the remaining (n− 1)− 3 =

(n − 4) squares. There are Ccorner =
(

n−4
k

)

ways of doing this. Similarly

there are Cborder =
(

n−6
k

)

ways of securing a border square to yield a zero and

Cother =
(

n−9
k

)

ways if the initial move was not in a corner or on a border.

The following probability

max
x∈C

Cx
(

n

k

) (5.1)

needs to be maximised, which is done by selecting the largest Cx. It is

3Note that in the special case of playing a predefined configuration information is
available on the board and a guess is not required.

4The Minesweeper game included in the Microsoft Windows operating system imple-
ments the first-move-safe rules.
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intuitive that Ccorner is the greatest, however for completeness an argument

to justify this claim is included. Consider Pascal’s triangle identity

(

n

k

)

=

(

n− 1

k

)

+

(

n− 1

k − 1

)

(5.2)

and note that in our case k ≥ 1 and n ≥ 1 since we need to place at least

one mine on the board. Using this fact we find that

(

n− 1

k − 1

)

> 0⇒

(

n− 1

k

)

<

(

n

k

)

(5.3)

from equation 5.2. By transitivity

(

n− 4

k

)

>

(

n− 6

k

)

>

(

n− 9

k

)

(5.4)

when (n− 9) > k which is generally the case since the total number of mines

is usually a percentage of the number of squares (just over 20% at expert

level). Hence probing a corner square will maximise the probability of finding

a “0” label at the first move, and thus all the developed strategies will always

probe the top left corner as the first move of the game.

5.2 Single point strategy

5.2.1 Background and motivation

At a high level, the single point strategy aims to identify safe moves based

on the information provided by a completed move (x, b) and the squares

immediately adjacent x. The motivation behind the single point strategy is

the observation that it often is possible to deduce some safe moves using only

the information from the probed square and its neighbours. The name was

chosen mainly due to the fact that the strategy will only consider one square

at a time, but also because the most elementary PGMS strategy has that

name and has similar motivation. We point out that neither source code nor
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any description of that strategy have been accessed both prior and after our

strategy development.

5.2.2 Procedural detail

The single point strategy maintains an ordered set S of all identified safe

moves. At each move the strategy checks whether S 6= {}, and if so removes

the first move M = (x, b), b ∈ {0, 1} from S and performs it5, otherwise the

algorithm will randomly select a move M = (x, 0) where x is any square

on the board that has not been probed. After performing M the algorithm

checks for safe moves in the neighbourhood of x that can be added to S \

{M}. There are two cases in which safe moves can be deduced around x,

namely if all neighbours are safe or all neighbours contain mines. Both of

these cases can be easily detected provided the availability of the functions

Neighbours(x) and Label(x), which return the set of board positions

neighbouring x and the label of square x respectively.

To check whether the remaining squares around x are safe, the set Nx

of x’s neighbours is partitioned into two disjoint sets Fx = {x′|x′ ∈ Nx ∧

label(x′) 6= ∗} and Ux = {x′|x′ ∈ Nx∧label(x′) = ∗}.6 If |Ux| = Label(x)

then the remaining squares in Nx, namely Fx are safe and the set of moves

{(x′, 0)|x′ ∈ Fx} can be added to S.

Similarly to check whether the remaining squares around x must contain

mines the following partition on PNx is used. Fx = {x′|x′ ∈ Nx∧label(x′) =

null} and Ux = {x′|x′ ∈ Nx∧label(x′) = ∗}. Now, if |Ux|+|Fx| = Label(x)

then all the squares in Fx must contain a mine and hence the set of moves

{(x′, 1)|x′ ∈ Fx} is added to S.

Since the strategy only attempts to discover new moves immediately fol-

lowing a move (x, b) it is important that as much information about the

neighbourhood of x as possible is available. A priority queue based on sim-

ple information theory, which states that knowing something that has a low

5Note that we use the notation introduced in the definition of a move (Definition 4.3.1).
6Recall that the asterisks symbol (*) is used to denote a mine label.
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probability conveys more information than knowing something that has a

high probability, is implemented. In general a square will have more mine-

free neighbours than neighbours containing a mine, and hence it is considered

more valuable to know the position of a mine rather than a free square, so

moves identifying a mine are added to the front of the set. Algorithm 1

outlines the single point strategy.

Algorithm 1 Single point strategy.

S ← {}
while not lost do

if S 6= {} then
(x, b)← first(S)

else
(x, b)← (random, 0)

end if
doMove(x, b)
if label(x) = 0 then

S ← S ∪ neighbours(x)
else

N ← neighbours(x)
for each n ∈ N do

if label(n) =adj mines(n) then
S ← S ∪ neighbours(n)

end if
if unprobed adj(n)+adj mines(n) =label(n) then

S ← S ∪ neighbours(n)
end if

end for
end if

end while

5.2.3 Complexity

The worst-case complexity of the single point strategy is now briefly dis-

cussed. Let S(n) denote the time single point strategy takes to play a

Minesweeper game on a board of size n. Ironically, the worst case of the

single point strategy is when it succeeds in winning a game. From algorithm
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1 it appears that two nested loops determine the complexity, however the

inner for-loop will have maximum eight iterations, since any square in 2-

dimensional Minesweeper can have at most eight neighbours. Thus only the

implementation of the set-union operator needs to be considered in order to

determine the worst case cost of S(n). It is clear that the set-union operator

needs to compare the inserted elements to each element already in S which

depends on the number of moves already performed. Say the move that has

last been performed was move i, then the worst case is when S contains n− i

elements. The worst-case performance of the single point strategy is thus

S(n) =
n

∑

i=1

8
n−i
∑

j=1

1 (5.5)

= 8

n
∑

i=1

(n− i) (5.6)

= n2 −
n(n− 1)

2
(5.7)

∈ O(n2). (5.8)

The alternative implementation of S as an ordered binary tree would

decrease the insertion time of an element to log n and a worst case of S(n) ∈

O(n log n) would be achieved. This implementation would however impose

an external order on S based on the game board rather than the FIFO order

which we require. The reason for this seemingly inefficient implementation

of S is that a data structure with a queue-like behaviour but with the set

property of no repeated elements is needed. Despite the quadratic worst-

case performance of the single point strategy, we point out that it will be

extremely unlikely that S contains sufficiently many elements to significantly

affect the actual run-time of the implemented strategy, and thus the hidden

constant would be small.
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Beginner Intermediate Expert

Avr. wins (%) 77.4 29.1 0.5
Win variance 17.15 20.47 0.48
First zero wins (%) 81.4 33.1 0.7
Avr. guesses 2.30 4.38 5.45
Guess variance 2.43 7.60 13.54

Table 5.1: Performance summary for the single point strategy.

5.2.4 Performance analysis

The results of the single point strategy are summarised in table 5.1 from

which it is seen that it won 77.4% of the games at beginner level with a

variance of 17.15, 29.1% at intermediate level with variance 20.47, and 0.5%

at expert level with variance 0.48. In fact, the CSPStrategy only wins 80% of

its beginner level games[18] at the obvious cost of a much more complicated

algorithm. Furthermore, all PGMS strategies perform worse than the single

point strategy at beginner level.

The single point strategy makes an average of 2.30 guesses per game with

a variance of 2.43 at beginner level. Performing just over two guesses per

game is relatively good considering that it is intended to be a novice strategy.

Furthermore, the single point strategy increased its winning percentage to

81.4% in games where the first probe yielded a zero label, implying that the

second move of the game was not a guess.

At intermediate level, the single point strategy was substantially worse

than the CSPStrategy but still performed significantly better than the most

elementary PGMS strategy (also single point) which only won about 4%

of the games [18]. Unsurprisingly the average number of guesses per game

increased significantly to 4.38 with variance 7.60. It was expected that as

the mine density of the board increased (0.15625 at intermediate level) more

guesses would have to be made, and the large variance indicates a relatively

unstable strategy. Considering only games where the first probe yielded a

zero, the single point strategy won 33.1% of the games at intermediate level.
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The expert level performance was predictably poor, primarily due to fre-

quent guessing resulting from the very limited scope the strategy has to make

decisions on when a square is mine-free. The average number of guesses was

only 5.45 with variance 13.54. While the average may seem small compared

to the 4.38 at intermediate level, the increased mine density of 0.20625 means

that less guesses are successful and hence a game is more likely to end at a

loss with fewer guesses being performed. Note that the mine density at ex-

pert level implies that just over every fifth square contains a mine, and hence

it is not unsurprising that the average number of guesses is just about five.

From these statistics we feel that reducing the number of guesses made on

expert level, and guessing more wisely is the principal area that needs im-

provement in more advanced strategies. Finally note that the single point

strategy was not capable of solving the configuration from figure 3.7.

5.3 Limited search strategy

5.3.1 Background and motivation

As previously documented, the single point strategy performs poorly on the

advanced level primarily due to its small search space and limited methods of

reasoning about the board. It is clearly not realistic to attempt discovering

the positions of all mines only by looking at the immediate neighbours of each

square, however care must also be taken not to create an intractable problem

by attempting to exhaustively search too great an area. The theoretical

results presented indicate that in order to create a successful strategy, which

remains computationally tractable, a method of significantly reducing the

playing area without depriving the strategy of useful information is required.

The limited search strategy comprises of a backtracking algorithm, which

determines whether an initial assumption of placing a mine at a particular

square implies a contradiction, which will be applied to a significantly reduced

part of the playing area using a ‘zone of interest’.

The method for reducing the search space is from an idea, termed the
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Figure 5.1: The zone of interest of the square X.

zone of interest, introduced by Peña and Wrobel in a paper exploring a

multirelational learning method for playing Minesweeper [13]. The zone of

interest is intended to be the set of labelled squares in the proximity of an

unknown square that is most useful for determining whether the unknown

square is safe.

Definition 5.3.1 The zone of interest of an unknown square x is the set

of squares labelled with numbers that are adjacent to x along with the set

of labelled squares that share an unknown square with one of the labelled

neighbours of x.

Consider the configuration in figure 5.1 where the safety of X is required.

Using the highlighted zone of interest it is clear that exactly one of the squares

marked A must contain a mine implying that the left neighbour of X must

also contain a mine, hence X is mine-free. We recognise that this example is

contrived for the purpose of illustrating the usefulness of the zone of interest,

however it illustrates that the zone of interest contains a good choice of

squares that is neither so large that the search problem becomes intractable

nor so small that the information required to solve the configuration is lost.

The limited search strategy considers each square in turn to determine

whether a safe move can be performed on it. This is done by initially assum-
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ing that the square in question, x, contains a mine and then exhaustively

constructing the possible configurations with no unknown squares in the

neighbourhood of the zone of interest. If a situation arises where no valid

assignment can be made then it can be concluded that the previous assign-

ment was erroneous and backtracking is required. The aim of this procedure

is to backtrack all the way to the assignment of x, implying that no explana-

tions of the configuration have the initial assignment choice. If this situation

occurs it is clear that the initial assumption — x contains a mine — is false

and hence x is mine-free. The same method is used with the assumption that

x is mine-free if no contradiction was reached in the first search.

Limited search uses a simple backtracking algorithm based on depth-first-

search, chosen primarily due to its minimal memory requirements despite

having exponential complexity. One might have considered breadth-first-

search better suited for the application since it avoids searching deep branches

of the tree that do not contain an explanation, however by construction of

the search problem all explanations will only be recognisable at the last level

of the recursion and breadth-first-search would thus loose its performance

advantage while having large memory requirements. Depth-first-search is

thus most appropriate.

5.3.2 Procedural detail

A detailed description of the limited search strategy is now presented and

the pseudo-code is detailed in algorithm 2. Assume that an unlabelled

square x needs to be explored. Initially two sets, Zone containing all the

labelled squares that needed to explore x, and O containing all the un-

labelled neighbours of all members of Zone, are created. An arbitrary

order is imposed on O, with the only restriction that O1 = x. Hence

O = {s ∈ X|∃s′ ∈ Zone.s ∈ adj(s′) ∧ label(s) = null}.

Zone is used to maintain two sets of variables SSquares which represents the

set of unlabelled squares adjacent to z and Sinfo which contains the number
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of unexplored mines7 adjacent to z. SSquares and Sinfo will be maintained in

parallel and are intended to be implemented as a joint data structure which

we denote by the short hand S.

S and O are used to perform the actual search which is outlined in al-

gorithm 3. If the search returns the Boolean value true, it indicates that a

contradiction has been found and that the inverse move to the one attempted

in the search can be safely performed. If, once the strategy has considered

all the squares on the board no safe move has been performed, it concludes

that a random guess is required.

The search algorithm is the main backbone of the limited search strategy,

and its functionality will now be described. The search function search

takes three arguments: S, O, and a Boolean value b which indicates whether

the algorithm should place a mine on the next square in O or leave it mine-

free. The next square to be considered is simply the next square in the

ordered set O; note that the square in question x has been explicitly placed

at O1 in order to ensure that it is the first square to be considered in the

search.

Search achieves the desired backtracking by a recursive implementation

of depth-first-search. Each time it is called it will first check the base case,

namely whether O is empty in which case it will conclude that no contra-

diction has been made on the current branch and returns false. If O is not

empty limited search will select the first square of O, s = O1, and create a

set O′ = O \{s}. Note at this point that |O′| = |O|−1 ensuring that the size

of O is decreased by one in each recursive call, implying that the recursion

will terminate.

The new state of S will be represented by S ′, which is created using the

value of b.

• If b = true the algorithm will assign a mine to s and creates S ′ as

follows. For each z ∈ Zone if s ∈ SSquares(z) then S ′

Squares(z) =

SSquares(z) \ {s} and S ′

info(z) = Sinfo(z) − 1, otherwise S ′(z) = S(z).

7unexplored mines = label(z)− number of known adjacent mines to z.
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Algorithm 2 An outline of the Limited search strategy.

while not lost do
moved = false

for each x ∈ X do
S ← {}
Z ←zoneofinterest(x)
O1 ← x

for each z ∈ Z do
O ← O∪adj nolabel(z)

end for
for each z ∈ Z do

SSquares(z)← adj nolabel(z)
Sinfo(z)←label(z)−#adj mine(z)

end for
if search(S, O, true) = true then

probe(x)
moved = true

end if
if search(S, O, false) = true then

mark mine(x)
moved = true

end if
end for
if moved = false then

make random move
end if

end while
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Hence, if a mine is assigned to square s limited search will decrease

the information counter associated with each element z ∈ Zone whose

current set of unknown neighbours contains the element s and then

remove s from the set of unknown neighbours of z.

• If b = false the algorithm will make s mine-free and create the set

S ′ as follows. For each z ∈ Zone if s ∈ SSquares(z) then S ′

Squares(z) =

SSquares(z) \ {s} and S ′

info(z) = Sinfo(z), otherwise S ′

z = Sz. Hence, if

s is assigned to be mine-free limited search will remove s from the set

of unknown neighbours of z for each element z ∈ Zone whose current

set of unknown neighbours contains the element s without decreasing

the information counter associated z.

After the creation of O′ and S ′ limited search uses S ′ to detect whether

the assignment of s was invalid. There are two cases of an invalid assignment

and they can both be checked easily using the structure of S ′. Observe that

the cases are not mutually exclusive as situations can arise where both types

of inconsistency occur from a single assignment to s. However, with respect

to the algorithm it is irrelevant which inconsistency is detected since the

required action is the same in both instances.

The most obvious case is when s has been assigned a mine, but all the

mines adjacent to one of s’s neighbours have already been identified. This

situation can be detected by checking whether any z ∈ Zone has a negative

S ′

info(z), since S ′

info(z) is decremented each time a mine is placed adjacent

to z.

The second case of inconsistency occurs when s has been assigned mine-

free but as a result one of its labelled neighbours no longer has enough un-

labelled neighbours to place the required number of mines on. Since s has

been removed from S ′

Squares(z) for all z with out an associated decrease in

S ′

info(z) this situation is detected by checking whether there exists any ele-

ment z ∈ Zone such that |S ′

Squares(z)| < S ′

info(z), in which case z has less

unknown neighbours than the required number of remaining mines adjacent

to it.
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Once an inconsistency has been detected search returns true without

performing further search on the current branch of the tree. If no inconsis-

tency is detected search will generate two new recursive calls, both with O′

and S ′ as the parameters, and one with b = true and one with b = false in

order to correctly check all possible assignments of values to the remaining

squares in O′.

5.3.3 Complexity

The asymptotic worst-case performance of limited search will now be derived

and the size of the hidden constant will be discussed since it will be useful in

obtaining a reasonable estimate of the actual runtime. In a similar sense to

the complexity of the single point strategy, the worst case of limited search

is when it succeeds in winning a game. From algorithm 2 we see that it

consists of two nested loops iterating over all squares on the board. Note

that an inner for-loop also exists, but this loop will never iterate more than a

constant number of steps and does thus not affect the worst-case performance

of limited search. Considering the outer loop it is clear that it iterates as

long as there are unknown squares left on the game board, and that at least

one move will be made during each iteration. Thus, the worst case will occur

when exactly one move is performed during each iteration of the outer loop,

which would then be executed n times. The inner loop is executed once for

each square left on the board, and each call to the function search can

be used as a barometer to determine the complexity. Letting S(N) be the

worst case performance of search and L(N) the time to perform the limited

search strategy on a size N board it is clear from the above argument that

L(N) =
∑

x∈X
label(x)=null

∑

x∈X
label(x)=null

S(N) (5.9)

≤

N
∑

i=1

N
∑

i=1

S(N) (5.10)

∈ O(N2S(N)) (5.11)
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Algorithm 3 The searching algorithm used by the Limited search strategy.

function search(S, O, b)
if O = {} then

return false

else
p← O1

O′ ← O \ {p}
if b = true then

for each z ∈ Zone do
if p ∈ SSquares(z) then

S ′

info(z)← Sinfo(z)− 1
S ′

Squares(z)← SSquares(z) \ {p}
end if

end for
else

for each z ∈ Zone do
if p ∈ SSquares(z) then

S ′

info(z)← Sinfo(z)
S ′

Squares(z)← SSquares(z) \ {p}
end if

end for
end if
for each z ∈ Zone do

if S ′

info(z) < 0 then
return true

end if
if |S ′

Squares(z)| < S ′

info(z) then
return true

end if
end for
return search(S ′, O′, true)∧search(S ′, O′, false)

end if
end function
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so the complexity of limited search depends on the complexity of the search

algorithm.

From algorithm 3 each recursive call to search requires an amount of

work linear in the size of S and generates two recursive calls to search with

the size of O decreased by one. Let n and M denote the sizes of O and

S respectively, noticing that M remains constant throughout the recursion.

Define the recurrence relation S(n) as follows:

S(n) = 2S(n− 1) + O(M) (5.12)

S(0) = 1 (5.13)

Dividing both sides by 2n and substituting T (n) = S(n)
sn

we get

T (n) = T (n− 1) +
O(M)

2n
. (5.14)

But S(0) = 1⇒ T (0) = 1 so

T (n) =
n

∑

k=1

O(M)

2k
(5.15)

= O(M)

n
∑

k=1

2−k (5.16)

= O(M)(1− (
1

2
)n). (5.17)

Thus, substituting back for S(n)

S(n) = 2nO(M)(1− (
1

2
)n) (5.18)

= O(M)(2n − 1) (5.19)

= 2nO(M)−O(M) (5.20)

∈ O(M2n). (5.21)

Hence, as intended, the search function has a worst-case complexity ex-

ponential in the size of the search area rather than the size of the entire
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Beginner Intermediate Expert

Avr. wins (%) 91.7 64.3 17.0
Win variance 7.09 22.11 14.35
First zero wins (%) 96.3 74.0 21.8
Avr. guesses 1.68 2.85 4.50
Guess variance 1.31 4.17 8.22

Table 5.2: The performance summary of the limited search strategy.

board. In general M is bounded by n and since the size of the search area is

bounded from above by a constant, c1 we technically have M ≤ c2n ≤ c1 for

n > n0, which implies that S(n) ∈ O(1). The complexity of limited search is

thus L(N) ∈ O(N 2) i.e., the same as the single point strategy.

Despite the complexity being the same in the worst case, the constant

involved needs to be considered in order to obtain a reasonable estimate of the

actual execution time. Assume for simplicity that the search area is exactly

two squares in each direction from the square in question, and approximately

one third of the squares in this area are unlabelled. This means that the

search area is eight squares and the number of labelled squares is 17. Hence

limited search will take approximately 17× 28 = 4352 elementary operations

in the inner loop compared to one in the single point strategy. As the size of

the search area increases the inner constant increases exponentially, however

as the search area is unaffected by the input size it is asymptotic.

5.3.4 Performance analysis

The results for limited search are summarised in table 5.2 and it is seen that

it won 91.7% of the games played at beginner level with a variance of 7.09,

64.3% at intermediate level with variance 22.11, and 17.0% at expert level

with variance 14.35. This is as expected a significant increase in performance

over the single point strategy. Limited search is also significantly better

at both beginner and intermediate levels than the benchmark performance,

however at expert level it remains inferior.
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* * *
3 3
1 1

Figure 5.2: A Minesweeper configuration that cannot be solved without mak-
ing a 50-50 guess.

At beginner level the performance is now close to optimal. If only games

in which a zero was yielded at the first move are considered the limited search

strategy wins 96.3% of the games. This is significant since it implies that once

the strategy has found an area in which it knows some safe moves it is able

to keep extending that area to the remaining board. Obviously situations

occasionally arise that cannot be solved explicitly by any algorithm; such as

the configuration shown in figure 5.2, where there is a 50% chance of the

one remaining mine being at either of the two blank squares. On the basis

that unsolvable configurations can occur in Minesweeper games, we believe

that a wining percentage of 96.3 is indeed close to optimal. Also note that

the average number of guesses made per game has decreased to 1.68 with a

variance of 1.31. Considering that each game must have at least one guess

(the first move) this data is further evidence that the limited search strategy

is capable of identifying virtually all the safe moves on the board.

The intermediate level performance has been increased significantly com-

pared to the single point strategy, but unexpectedly at the cost of a slight

increase in variance. The performance increase is mainly contributed to a

significant decrease in the average number of guesses to 2.85 with variance

4.17. The fact that limited search uses one and a half guesses less on av-

erage shows that it is more successful in locating safe moves on this level.

The variance of guesses is also significantly reduced which indicates that long

sequences of guesses are uncommon in the limited search strategy. This is

because a successful guess is more likely to provide useful information for

some unlabelled square on the board, and a new sequence of safe moves can

be initiated. Observe that if only games in which the first probe yielded a
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zero are counted, limited search won 74.0% of the games. This again shows

the importance for the limited search strategy to find an area where it can

identify several safe moves and hence increase the size of that area.

The advanced level performance is where the largest performance increase

has occurred, and again the low variance and average number of guesses are

the main reasons for this. The average number of guesses at this level is

4.50 with variance 8.22 which is a substantial improvement from the single

point strategy. While the average is only about one guess less, the much

smaller variance implies that the strategy is more able to use the search

function to explore the known area and thereby guess less frequently. It is

also noteworthy that the winning percentage increases to 21.8 if only games

where the first probe yielded a zero were counted. The increase is not as

large as we might have hoped and it indicates that although a safe area

is discovered at the beginning of a game, the mine density is so high that

the strategy still needs to make several guesses in order to extend the safe

area to the complete board. This means that the strategy needs to guess

frequently in situations where the information on the board would be helpful

in minimising the probability of hitting a mine. Limited search can therefore

mainly be improved by improving the guessing strategy employed. Otherwise

the results indicate that the search function is very successful in identifying

safe moves and was capable of solving figure 3.7 without making a guess.

5.4 Adding probability estimates

5.4.1 Background and motivation

In the previous section it was seen that the limited search strategy per-

formed relatively poorly on advanced level mainly due to frequent guessing.

In this section limited search is extended to utilise the information provided

when making a guess. This is done by estimating the probability of each

square containing a mine, and selecting the square with the lowest probabil-

ity. Again the previously presented theoretical results affect the approaches
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that can reasonably be taken. It is clear that in order to calculate the exact

probability of any square, say x, being a mine we need to count the num-

ber of explanations the configuration has with a mine on x and divide this

number by the total number of explanations. However, counting the number

of explanations a configuration has is exactly the problem #consistency

(see definition 4.2.2), which is #P-complete by theorem 4.2.3. This result

restricts us to make use of estimates of the total probabilities for each square.

In order to estimate the probability of each square containing a mine,

the search algorithm used in limited search is extended to count the num-

ber of explanations found, rather than simply returning whether or not any

explanation was found. For each square x two searches will be performed,

one with x being a mine and the other with x mine-free. The sum of the

two search results will estimate the total number of explanations, which will

be used as a heuristic. It is clear that sine the number of explanations of

the configuration is required, the choice of the local area becomes signifi-

cantly more important. Presently the zone-of-interest approach will be used,

however other simple choices of local areas will be investigated subsequently.

5.4.2 Procedural detail

The search function of limited search can be easily extended to a search

function prob search which counts explanations as follows. Each time

search returns true, indicating that a contradiction has been found, prob search

returns a 0, since no explanations were found on the current branch of the

recursion. When search returns false, because it has reached the end of

the set of squares without finding an inconsistent assignment, prob search

returns a 1, indicating that it has identified one explanation of the search

area. Finally, rather than conjoining the results of each recursive branch as

done in search, prob search simply sums the total number of explana-

tions found in each branch. The pseudo-code for prob search is shown in

algorithm 4.

The main body of the limited search with probability estimates strategy
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Algorithm 4 The extension of the search function to count explanations.

function search(S, O, b)
if O = {} then

return 1
else

p← O1

O′ ← O \ {p}
if b = true then

for each z ∈ Zone do
if p ∈ SSquares(z) then

S ′

info(z)← Sinfo(z)− 1
S ′

Squares(z)← SSquares(z) \ {p}
end if

end for
else

for each z ∈ Zone do
if p ∈ SSquares(z) then

S ′

info(z)← Sinfo(z)
S ′

Squares(z)← SSquares(z) \ {p}
end if

end for
end if
for each z ∈ Zone do

if S ′

info(z) < 0 then
return 1

end if
if |S ′

Squares(z)| < S ′

info(z) then
return 1

end if
end for
return search(S ′, O′, true)+search(S ′, O′, false)

end if
end function
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differs only from that of limited search in its actions after receiving the search

results. Let m be the returned number of explanations with x containing a

mine, and f the number of explanations with x mine-free. Trivially, if m = 0

then x must be mine-free and can be probed immediately, similarly if f = 0

then x must contain a mine, which is placed immediately. Otherwise let

p = m
m+f

be the estimated probability of x containing a mine and add the

pair (x, p) to a set SafeList. Since at most one guess will be made following

each iteration, only the squares with the lowest probability of containing a

mine need to be stored. SafeList is implemented as a set of pairs (s, q),

such that for any two pairs (s1, q1) ∈ SafeList and (s2, q2) ∈ SafeList it

holds |q1− q2| ≤ ε for some small value of ε. Although q1 and q2 are rational

numbers by definition and can hence be tested for equality, the ε definition

is used for implementation purposes in order to ensure that an incorrect

set is not maintained due to representation errors. A suitable value for ε

would be 10−5. When a new pair (x, p) is added to SafeList any element

(s, q) ∈ SafeList is selected and p and q compared.8 The three outcomes

are considered separately.

• p− q > ε. If the new pair has a higher probability of containing a mine

than all existing elements in SafeList it is discarded and SafeList

remain unchanged; SafeList← SafeList.

• |p − q| ≤ ε. If the new pair has the same probability of containing

a mine as the elements already in SafeList it is added; SafeList ←

SafeList ∪ {(x, p)}.

• p−q < −ε. If the new pair has a lower probability of containing a mine

than all elements in SafeList, all elements currently in SafeList are

discarded and SafeList becomes the singleton containing only (x, p);

SafeList← {(x, p)}.

This implementation of SafeList ensures that both adding and retrieving

elements are constant time operations, rather than insertion time linear in

8By transitivity it is sufficient to only compare one existing pair with the new pair.
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the board size if a list implementation storing all pairs was used.9 This is

significant since the insertion is performed n times during the inner loop

in the worst case. If after considering each remaining square on the board

no move has been made, a random element — known to be of minimal

probability of containing a mine — is selected from SafeList and probed.

The pseudo-code for the limited search with probability estimates strategy

is shown in algorithm 5.

5.4.3 Complexity

The worst-case complexity of limited search with probability estimates is the

same as the basic limited search algorithm, as the probability estimates were

obtained without modifying the general structure of the search algorithm.

It was also showed that maintaining a list of the best probabilities can be

done with both addition and retrieval as constant time operations, hence not

creating extra significant process time to the strategy. There is however one

issue concerning the average case performance of the prob search function

worthy of a brief mention. The implementation of search used a feature

of the Boolean result required, such that once the value false was returned

by one branch of the recursion no more recursive calls would be generated

since at least one solution had been found.10 This feature would reduce the

average search time since only when a contradiction would be found or when

the only explanation lies in the final recursive branch would the entire tree

be searched. This slight gain in average case performance is not possible

to obtain when counting the number of explanations since the number of

explanations for each recursive branch needs to be counted. Thus, a slightly

worse average case performance would be expected caused by the addition

of probability estimates but there is no affect on the worst-case complexity.

9This could potentially be reduced to logarithmic time if SafeList was implemented
using an array but in that case space utilisation would not be optimal.

10This is due to the equivalence from Boolean algebra false ∧ B ≡ false.
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Algorithm 5 An outline of the limited search with probability estimates
strategy.

while not lost do
SafeList← {}
moved = false

for each x ∈ X do
S ← {}
Z ←zoneofinterest(x)
O1 ← x

for each z ∈ Z do
O ← O∪adj nolabel(z)

end for
for each z ∈ Z do

SSquares(z)← adj nolabel(z)
Sinfo(z)←label(z)−#adj mine(z)

end for
m = prob search(S, O, true)
if m = 0 then

probe(x)
moved = true

else
f = prob search(S, O, false)
if f = 0 then

mark mine(x)
moved = true

else
add move(SafeList, (x, m

m+f
))

end if
end if

end for
if moved = false then

make best move(SafeList)
end if

end while
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Beginner Intermediate Expert

Avr. wins (%) 92.5 67.7 25.0
Win variance 6.81 21.81 18.61
First zero wins (%) 97.1 77.8 30.0

Table 5.3: The performance summary of the limited search with probability
estimates strategy.

5.4.4 Performance analysis

The results of testing the limited search with probability estimates strategy

are summarised in table 5.3. Adding probability estimates to the limited

search strategy achieves a slight increase in winning percentage to beginner

level to 92.5% with a reduced variance of 6.81. At intermediate level the

winning percentage increased to 67.7% with a variance of 21.81 and at expert

level the winning percentage was increased by more than 40% to 25.0% with a

variance of 18.61. The performance increase gained from adding probability

estimates is evident, however at the advanced level our strategy remains

inferior to the benchmark performance set by the CSPStrategy.

The relatively small performance increase at both beginner and interme-

diate level indicate that at those levels it is difficult to improve this strategy

further. This is also suggested by the fact that the success rate at beginner

level is 92.5%, which increases to 97.1% in games when the first probe yields

a zero. The performance on both beginner and intermediate level remain

significantly above the benchmark. In fact Studholme [18] conducted experi-

ments where the ideal starting position (the square where the mine density is

least) was provided by the game and failed to beat the success rates achieved

by limited search with probability estimates, providing further evidence to

support the conjecture that it is very difficult to improve the performance

on these two levels.

Although adding probability estimates to the limited search increased

the success rate at expert level by 40% we were disappointed to remain

significantly short of the 34% success rate benchmark set by the CSPStrategy
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Estimated probability Trails Sucessful Observed probability

0.04 6337 5728 0.096
0.05 7292 6282 0.139
0.06 7764 7163 0.077
0.07 5208 4738 0.090
0.08 20860 18104 0.132
0.09 10233 9000 0.120
0.10 8903 7834 0.120
0.11 18033 15817 0.123
0.13 38223 33277 0.129
0.14 26462 22667 0.143
0.17 17278 14521 0.160
0.20 43800 35781 0.183
0.21 216323 192863 0.108
0.25 11359 9197 0.190
0.33 15981 11992 0.260
0.50 20206 10145 0.498

Table 5.4: Observed results for comparing estimated probability with ob-
served probabilities. Only estimated probabilities with more than 5000 trails
are included.

on the expert level. Furthermore, even when only considering games where

the first probe yielded a zero the winning percentage remained less than the

benchmark at 30%. For this reason we expect that it is possible to improve

the probability estimation methods employed by the algorithm, although

this may imply increasing the search area. Presently the data related to the

correctness of the estimates will be analysed. Each time the strategy used the

estimated probabilities to assist in guessing a move a counter associated with

the estimated probability of finding a mine was incremented. If the guess was

successful another counter associated with the same estimated probability

was incremented as well. The results are summarised in table 5.4, where

the observed probability of finding a mine is calculated as 1 − successful trails
total trails

.

Only probabilities where more than 5000 trails were performed are included

in order to let the observed probability stabilise.

Observe from table 5.4 that the estimated probabilities less than 0.10 are
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Figure 5.3: Estimation of probabilities with linear function.

generally too low, however the estimates in the region 0.10 ≤ p ≤ 0.20 are

close to the observed probabilities. It is interesting to note that the 0.21

estimated probability is almost twice as high as the corresponding observed

probability. Also, this is the most frequently chosen probability, mainly be-

cause all squares initially have a probability of 0.20625 of containing a mine.

For this reason, it is surprising that the estimated probability is so inaccurate,

especially compared with the 0.13 case which corresponds to the situation

where a one is revealed from the initial probe giving a 0.125 probability of

finding a mine adjacent to it. Finally the 0.50 estimate is very close to the

observed probability, a result we mainly contributed to the fact that once a

fifty-fifty guess is the best possible option left on the board, close to total

knowledge exists about the remaining squares. It is not uncommon for the

last move of the game to be a random choice between two squares equally

likely to contain the final mine on the board.

Further to considering the raw data only, figure 5.3 shows all the data
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Figure 5.4: The difference between the observed probability and the esti-
mated probabilities.

point plotted as the estimated probability versus the observed probability.

To aid interpretation, f(x) = x is plotted since ideally all the data points

should represent that function. It is helpful to consider that all points above

the line result from underestimating the probability and the points below

the line from overestimating the probability. The line is a reasonable fit to

the data, especially when not considering the two most noticeable outliers on

the x-axis, which are both a result of very small number of successful trails

(1 trail at p = 0.49 and 3 trails at p = 0.75). The closeness of the observed

probabilities to the estimated probabilities is also shown in figure 5.4 which

shows the estimated probability versus the difference between the observed

probability and the estimated probability. The two outliers are removed from

this figure, and the fit is relatively close to the x-axis. The region which is

overestimated by approximately 0.2 is a result of relatively few observations

for each data point.
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5.5 Further experiments with strategies

Adding probability estimates to the limited search strategy resulted in the

best Minesweeper strategy developed in this project. In this section the

selection of the search area and its effect on the performance of the strategy

will be analysed. We will experiment by gradually incrementing the search

area as a square and note the effect this has on the strategy’s win ratio.

Other than the simple win ratio the distribution of the search size will be

investigated in order to determine whether continually increasing the search

area has any significant effect on the performance.

5.5.1 The size of the search area

Six square sizes were tested and will be identified by their ‘radius’, the short-

est distance (number of squares) from the central square to the edge of the

interest area. The squares ranged in radius from two to seven. New data

was also collected for the zone of interest search area to enable comparison

based on the same number of statistical trails. As the runtime is exponential

in the size of the search area, only 1000 games were played by each strategy,

although for r = 7 only 600 were managed. Prior to performing each search,

the number of squares in the search area was recorded. It is important to

note that the interest area contains both unknown and labelled squares, but

since only unknown squares can be assigned a new value they constitute the

size of the search area. Furthermore if an unknown square has no labelled

neighbours, it will not be useful to consider this square a part of the search

area. The recorded size of the search area thus only contains the squares that

could usefully provide information about the board through assignments.

The results are displayed in table 5.5 which is sorted by the average size

of the search area. It is important to note that only 1000 games were played

implying a large variance of the win percentages, a fact that explains the

slightly higher winning percentage of the zone of interest search here than

previously presented. It is interesting to note that the zone of interest has
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Avr. size Size variance Games won (%) Largest area

Zone 8.47 7.96 26.3 24
r = 2 9.04 9.37 24.8 26
r = 3 11.56 17.96 26.5 36
r = 4 14.06 29.56 27.6 44
r = 5 16.46 44.57 30.0 56
r = 6 18.76 61.38 27.2 64
r = 7 20.92 82.55 28.0 66

Table 5.5: The average size of the search area and winning percentages for
playing 1000 games (only 600 for r = 7).

a smaller average search area than r = 2 but is more successful in winning

games, a result we expected given the careful choice of search area employed

by the zone of interest search. As expected, the average size increases gradu-

ally with the radius, and the variance becomes increasingly larger. Similarly

the win percentage increases steadily despite not being completely monotonic

as expected. Again we consider the small sample size and resulting large vari-

ance the reason for the slightly unexpected results. Note in particular that

the r = 5 case twice won 37 of the 100 games played in a set which is the

largest number of wins observed from any strategy. It is expected that the

data would become monotonic when the sample size is increased sufficiently,

and we take that as a strong indication that it is indeed possible to signifi-

cantly improve the strategy by considering a larger area of the game board.

Finally it is noted that the largest area that was searched was 66 squares

causing a worst case of 7× 1019 recursive calls.

While a significant performance improvement through expanding the search

area was observed it is important to consider the time constraints involved.

While playing 1000 games using the zone of interest is relatively fast (a mat-

ter of minutes), using r = 5 took approximately eight hours when running

as the sole process on a Pentium III with 256 MB RAM and 1000MHz. As

the search time increases exponentially with the size of the search area, the

collection of the presented data took approximately 5 days of continuous pro-
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cessing on the author’s own PC along with multiple processes executing on

a university server for part of the time. These rough estimates are sufficient

evidence for us to consider algorithms that search a large area unsuitable for

the collection of significant amounts of statistics, however for playing and

viewing a single game they are often successful.

5.5.2 Searching the complete board

As a final experiment a set of games that considered the entire board at each

move, hence playing a perfect game, was played. The only level where this

is practically possible, judging from the results of the previous experiments,

is the beginner level where it is reasonable to estimate that the search area

will only uncommonly exceed 50 squares.

10000 games were played on a beginner level board with r = 10 and this

failed to improve the performance from the zone of interest result previously

presented winning 92.4% of the games with a variance of 6.91. Other than

indicating that the zone of interest search is close to optimal at beginner

level it also underlines our claim that it is not possible to create a strategy

that wins every game since some configurations are not explicitly solvable.

Despite not improving the performance of the strategy, the search done with

r = 10 had an average search area of 16.44 squares compared with only 7.75

when using the zone of interest. The playing of 10000 games using r = 10

took close to eight hours, compared with a few minutes using the zone of

interest. It is interesting to see that searching the entire board does not

necessarily improve the performance, but due to its complexity it is very

costly in terms of processing requirements.



Chapter 6

The Minesweeper analyser

This chapter covers the development of the ‘Minesweeper analyser’, an ap-

plication used for implementing Minesweeper strategies. The project is not a

Software Engineering project and as a result this chapter is not intended to

document all design issues encountered rather it highlights the overall pro-

gram structure and provides the necessary information for readers wishing

to implement their own strategies.

6.1 Software requirements

The requirements for the Minesweeper analyser were detailed in the project

specification document [14] and the most important features are summarised

as follows:

• A graphical game board with the option to show or hide the mines,

• A summary panel showing the statistics for the current player,

• The ability for a human to create a game board graphically,

• Saving and loading created configurations,

• The possibility of to implementing automated players,

• An option to play several games without interaction, and

63
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• A command line option to play several games without any graphical

output and record the number of games won.

6.2 Design considerations

During the software design several issues were considered and decisions were

made to tailor the application to comply most effectively with the require-

ments, while aiming to maintain both design consistency and implementation

simplicity. A selection of design issues are now summarised but details of sev-

eral trivial design considerations are omitted.

6.2.1 Language choice

The Minesweeper analyser is implemented as a Java application. Java was

chosen to obtain the advantage of platform portability so both university

servers and the author’s personal equipment could be used for the collection

of statistics. As the language choice was made prior to the software design,

several design decisions were made considering implementation issues. Issues

such as abstract classes, multithreading, events and exception handling will

thus be considered during the software analysis and design.

6.2.2 Standardisation of strategy implementation

Providing a framework with an easy interface for implementing Minesweeper

strategies was a top priority and received much consideration during soft-

ware analysis. An informal template for a Minesweeper strategy was created

from which the interaction methods a strategy would require of the game

board, and the behaviours general enough to be abstracted out of each spe-

cific implementation could be extracted. The template was formalised to an

abstract class, since its specified behaviour in situations such as statistics

collection and communicating with a central control unit was general enough

to be implemented independent of the game playing part of the strategy.



6.2. DESIGN CONSIDERATIONS 65

This approach led to an easily accessible abstract class, which is required

to be extended by all Minesweeper strategies, hence enforcing a simple yet

powerful framework of ensuring software standardisation. The template was

also useful in designing a concise API for the game board component, the

only class a Minesweeper strategy needs to interact with.

6.2.3 Safety board information

An interesting issue is the problem of reducing the amount of board informa-

tion available to the developer of a strategy. Clearly the game board needs

to contain the actual mine locations and that this information should not be

accessible to a strategy but is required by the central control unit. It was

noted that not only should the mine locations be hidden from a strategy, but

also methods causing the board to be reset or otherwise modified.

This problem was solved by adopting a two-level game board design in

which the game board along with the information intended to be visible

to strategies made out the lower level, and the ability to alter the game

board and obtain the location of the mines were placed at a higher level.

Using this approach the game board could be encapsulated as two different

classes depending on the intended purpose, and an author of a Minesweeper

strategy would not be able to obtain extra information about the board.

Furthermore, several methods of the abstracted player were marked with

the final keyword in order to prevent overwriting of methods providing the

statistical results.

6.2.4 No graphics option

An important feature of the software is the ability to play several games

without invoking a GUI that would slow down the computation considerably.

Since only the main class of the GUI is required to be held in reference by the

control unit, this class was replaced by an interface containing signatures

of all required methods. The graphics implantation would implement these
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methods fully and thereby invoke a GUI, however a no graphics option was

easily crated by implementing this interface with empty methods. Hence

the user would be able to specify which implementing class was used by a

command line option.

6.3 Design

The major design issues of the Minesweeper analyser are now covered. A high

level design of the application is presented in the form of a class diagram,

and some low level design issues involving exception handling important for

understanding the requirements for implementing a Minesweeper strategy

are discussed. The function of each major class in the framework will be

summarised, however only the classes that require direct interaction or im-

plementation when implementing a strategy will be described in significant

detail.

6.3.1 Design overview

The software was designed with one centralised control component, the MinesweeperEngine,

as shown in figure 6.1. The two most important classes are Player and Board

representing an abstract player and the game board respectively. Board im-

plements the rules of Minesweeper and provides the required methods for a

Player to interact directly with it. Note that MinesweeperEngine holds ref-

erence to an AdminBoard which extends Board. AdminBoard contains meth-

ods for modifying the layout of the board and information about the locations

of mines can be retrieved from this information. Hence it needs to be invisible

to the Player which only holds reference to the actual game board. To allow

the MinesweeperEngine to carry out tasks such as reacting to user inputs

or updating the UI while a game is being played, Player is executed in its

own thread implemented by the PlayerRunner class. The GUI is controlled

by the MinesweeperEngine, which receives game information in the form of

events from both Board and Player and uses them in conjunction with the
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Figure 6.1: Class diagram for the Minesweeper analyser.

UI package.

6.3.2 The Board class

The Board class implements the rules of Minesweeper and maintains the state

of the game board. The game board is a 2-dimensional array of Tile objects

which contain information about each individual square of the board, such as

its current label and whether it contains a mine. Board has a public method

to retrieve the label of a particular square which is the only information

available to a Player about a square. Board also contains public methods

for obtaining the dimensions of the board, the total number of mines and the

number of remaining mines.

The only form of interaction a Player can have with the Board is to
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perform a move which can be either a ‘probe’ or placing a label on a square.

Board has a method for each type of move, which takes the square as pa-

rameter and if it is a labelling move also the label. The doMove method

throws four exceptions which need to be handled by the Player class. These

are GameWonException, GameLostException, GameInterruptedException

and InvalidMoveException. The first two are thrown when the game is

completed with a loss or victory to the player as appropriate, the third is

thrown when the user interrupts the game, and the InvalidMoveException

is thrown when the strategy attempts to perform an invalid move such as

probing an already probed square or specifying coordinates outside the game

platform.

6.3.3 The Player class

Player is an abstract class representing a Minesweeper strategy. Player

is mainly responsible for handling the two exceptions GameWonException

and GameLostException, and use them to maintain statistics for the imple-

mented strategy. A strategy is implemented by extending AutomatedPlayer,

an abstract subclass of Player which handles user generated events. AutomatedPlayer

contains one abstract method, play, which needs to be implemented as a

strategy. play receives the game board as its only parameter and throws

GameWonException, GameLostException, and GameInterruptedException

which means that the InvalidMoveException needs to be handled by the

implementing strategy.

6.4 Implementation and testing

This chapter is concluded by a discussion of some issues encountered during

the implementation and testing of the software. Following the software de-

sign an iterative implementation strategy was employed. This method was

preferred since the design has revealed several distinct modules that could

be implemented and tested separately, hence ensuring that they functioned
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properly before integrating them. The components that were developed first

were the basic game playing frameworks such as Board and Player. For test-

ing purposes a randomised player was implemented since it was very easy to

program and adequately meet the needs of being able to test the basic func-

tionality of the framework including a class extending AutomatedPlayer. A

basic GUI was also implemented early, as the aid of a graphical realisation

of the implemented strategies was an invaluable debugging tool for the de-

velopment of game playing strategies. Following the basic framework, the

specified features were implemented and with them the GUI functionality.

The source files were maintained using IntelliJ Idea. This provided a use-

ful resource for maintaining consistency in following naming conventions and

allowed easy access to several source files simultaneously for debugging pur-

poses. The automatic suggestion of available methods and variables along

with a continuous syntax checker were extremely useful in limiting typo-

graphic errors and hence greatly reduced the time spent on trivial debugging

matters and allowed us to focus on the logical testing and debugging of the

software.

Due to a thorough analysis and design, each module had well defined

easily observable functionalities which made testing of each one fairly straight

forward. An advantage of developing the framework of a game is that the

functionality is easy to observe visually and hence the bugs were relatively

easy to trace. The more abstract areas such as loading stored configurations

where less easy to debug, although the end results were easily observable.
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Conclusions

The broad areas of the project — the complexity of Minesweeper (including

configurations), the development of game playing strategies, and the design

and implementation of the Minesweeper analyser — will be concluded sepa-

rately and further work in each area will be mentioned. Finally the project

as a whole will briefly be reflected upon.

7.1 The complexity of Minesweeper

In this project three important complexity results for Minesweeper were pre-

sented. Both the problems of determining whether a unique explanation to

a configuration exists and whether a given move is safe are complete in DP,

while counting the number of explanations is complete in #P. These results

are significant restrictions of game playing strategies, and show that playing a

perfect game of Minesweeper is intractable. Although Kaye’s work provided

the framework of the proofs, the work presented does not follow immediately

from the NP-completeness of consistency. For example is it important

to realise that the configurations constructed by Kaye were not sufficient to

prove #P-completeness since the and does not have the required property

of uniqueness to create a parsimonious reduction.

Although several game playing questions have been raised and answered
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in this project there is still much interesting research that could be carried

out on the complexity of Minesweeper. One area that would be particular

interesting due to its very close connection with playing a game is an in-

vestigation of the complexity of similar problems to solution but with the

restriction that the original configuration is consistent. In this case it would

not be as intuitive to show membership of DP for the problem considered

here.

Another area of further work, which is closely related to the development

of Minesweeper strategies, would be a study of how small a search area can be

selected whilst maintaining close to perfect information. In particular some

theoretical bounds for the size of an optimal area would be useful, and it

would be interesting to discover how close the zone of interest approach is to

the optimal selection of game area. This is obviously a very challenging area

of research, but we believe that the Minesweeper analyser would be useful

for implementing approximation algorithms that could aid this investigation.

7.2 The development of Minesweeper strate-

gies

Limited search with probability estimates was the best Minesweeper strat-

egy developed. The performance at both beginner and intermediate level

was significantly higher than the benchmark, although remaining inferior at

expert level. While the complexity is quadratic in the board size, the runtime

of the strategy is heavily influenced by the size of the search area. Although

this is virtually a non-issue when playing a single game displayed graphically,

the relatively slow runtime meant that collecting sizable statistics about the

strategy was time consuming and required significant planning. We are gen-

erally pleased by the strategy development, especially considering that all

strategies have been developed independently of any third party, and only

at expert level does our best strategy not outperform the best third-party

strategy we are aware of.
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Despite of the successful development of Minesweeper strategies, we be-

lieve that this is a very interesting area in which to conduct further research.

One obvious area that would benefit greatly from further research is the

probability estimation, since it was clear from the statistics that it is not yet

perfected. This is an interesting problem since it was proved #P-complete

and hence approximate counting techniques would be required. It might

also be interesting to use Minesweeper as a test platform for approximate

counting algorithms for other #P-complete problems, since the estimated

probabilities can be easily compared with observed probabilities. It would

also be interesting to apply known SAT heuristics to a logic representation of

a Minesweeper configuration and compare their performance with the strate-

gies developed specifically for Minesweeper.

Finally, investigating further methods for improving Minesweeper strate-

gies remain an interesting task in it self. One possible method to improve

the average case performance of a strategy could be to investigate methods

for discovering several safe moves during a single search or combining the

constant time detection used in the single point player with a more advanced

search strategy at each move. We feel that this is an area of algorithmic

development that is both challenging and rewarding, since it allows us to at-

tempt solving an NP-complete problem visualised as an entertaining game

and it is rewarding to develop strategies more successful than one self at

playing the game.

7.3 The Minesweeper analyser

The Minesweeper analyser proved a powerful application for the implementa-

tion and analysis of the developed Minesweeper strategies. It benefited from

a simple interface, which allowed standardisation of strategy implementation.

As the development of the application was a relatively low priority there are

several ways in which it could be improved. These improvements are how-

ever more a way of improving the application into a program suitable for
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distribution on The Internet rather than the foundation of future projects.

The Minesweeper analyser could be improved in the following areas:

• Improve the functionality of the “save configuration” function to allow

randomly generated configurations to be saved.

• Provide a plug-and-play interface to compile a strategy stored in a

separate file and executing it without needing to update the source

code of Minesweeper analyser.

• Improve the safety features implemented to further ensure that a strat-

egy implementer cannot obtain vital board information or handle the

end of game exceptions to manipulate the recorded result.

• Improve the usability features of the application.

7.4 General project conclusions

It is felt that the project has achieved the objectives initially defined as

several results about the complexity of Minesweeper were obtained along

with the completed development and implementation of three Minesweeper

strategies and the game framework. It is worth pointing out again that all

the work presented, with the exception of the definition of a zone of interest

and Kaye’s theorem, is original and that no other strategy has been identified

that is more successful on both beginner and intermediate level than our best

method.
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Appendix A

Instructions for using the CD

This is a copy of the README.TXT file found on the submitted CD.

A.1 CD overview

The CD contains two folders, source and compiled. The source folder contains
the source code for the Minesweeper analyser and can be viewed with any
text editor. The compiled folder contains the compiled version of the software
and can be executed directly from the CD.

A.2 Executing the Minesweeper analyser

In order to execute the Minesweeper analyser in graphics mode, no command
line options are required, i.e. the command is java Minesweeper. The
-verbose option is optional and if used debug information will be written to
the screen.

In order to play several games without invoking a graphics window, the -g
option is used. The -g options takes six integer parameters: width, height,
number of mines, number of games, strategy, rules. The strategy parameter
is used as follows:

1. Single point strategy

2. Limited search strategy

3. Limited search with probability strategy

4. Limited search with probability strategy, r=2

5. Limited search with probability strategy, r=3
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6. Limited search with probability strategy, r=4

7. Limited search with probability strategy, r=5

8. Limited search with probability strategy, r=6

9. Limited search with probability strategy, r=7

10. Limited search with probability strategy, r=10

The rules are coded such that 0 means that a loss can occur on the first
move, and 1 means that the first move is safe.

Furthermore the option -f can be used to write the results to a file along
with extra statistics collected such as the average size of the search area. -f
takes the filename as parameter. By default the results are only written to
file at the end of the computation, but the -write option forces results to
be written after every 100th game. The options -noResults and -noCount

prevent output of the outcome of each game and the number of the game
currently played to be displayed on the screen.

For example the command java Minesweeper -g 10 10 10 1000 1 -f

testfile -noResults -noCount will play 1000 games at beginner level with
first move safe rules and write the results to testfile. No output will be
generated in the command window.


