Understanding Concerns in Software: Insights Gained from Two Case Studies

Meghan Revelle, Tiffany Broadbent, and David Coppit
Department of Computer Science
The College of William and Mary
Williamsburg, VA 23187-8795
{meghan, tbroadbe} @ cs.wm.edu, david@ coppit.org

Abstract

Much of the complexity of software arises from the inter-
actions between disparate concerns. Even in well-designed
software, some concerns can not always be encapsulated
in a module. Research on separation of concerns seeks
to address this problem, but we lack an understanding of
how programmers conceptualize the notion of a concern
and then identify that concern in code. In this work, we
have conducted two exploratory case studies to better un-
derstand these issues. The case studies involved program-
mers identifying concerns and associated code in exist-
ing, unfamiliar software: GNU’s sort.c and the game
Minesweeper. Based on our experiences with these two
case studies, we have identified several types of concerns
and have detailed a number of factors that impact program-
mer identification of concerns. Based on these insights, we
have created two sets of guidelines: one to help program-
mers identify relevant concerns and another to help pro-
grammers identify code relating to concerns.

1. Introduction

A key problem with software is that it can become very
complex, and much of this complexity can be derived from
the interaction of concerns. Techniques for separation of
concerns seek to cleanly disconnect concerns from source
code in order to reduce complexity and increase compre-
hensibility [5, 10]. As Murphy and Lai note, many of the
approaches for separation of concerns are still maturing, so
there is no widely-accepted definition of what constitutes
a concern [8]. There is an intuitive understanding of con-
cerns, but a concrete definition is hard to come by [15].

Of the definitions provided by researchers, most are
very broad and general. Robillard describes a concern as
“any consideration ... about the implementation of a pro-
gram” [11]. Similarly, Ossher and Tarr define a concern
to be a part of a software system that is relevant to a spe-
cific concept or purpose. They also note that there can be

many different kinds of concerns at the different stages of
the software life cycle [10]. For example, views can be
used in the requirements phase to address only the criterion
(concern) of interest [9]. Sutton [15] adds his own gen-
eral characterization of a concern as “any matter of interest
in a software system.” While there is nothing inherently
wrong with these definitions because they are so flexible,
their generality leaves the meaning of “concern” unclear.

Lai and Murphy [7] as well as Turner et al. [17] have
a more specific definition in which concerns are consid-
ered to be features—a functional property of a system
that is visible to the user. However, it is clear that there
are important non-feature concerns, such as performance.
Aspect-oriented programming (AOP) [6] is a specific in-
stance of separation of concerns that modularizes concerns
that cross-cut a system’s functionality, such as memory ac-
cess patterns. AOP terms these units that are not a part
of the system’s functional decomposition aspects. Clearly,
there is no consensus on the definition of a concern since
researchers’ definitions range from the vague “any consid-
eration” to functional properties such as features to cross-
cutting aspects.

We believe that this lack of consensus is due at least in
part to our lack of understanding of how programmers think
about concerns and identify them in source code. While we
believe that flexibility in the notion of “concern” is useful, a
clearer understanding of possible types of concerns would
be a valuable guide for programmers and would help clar-
ify the terminology of researchers. From a practitioner’s
standpoint, a programmer faced with the task of identifying
concerns in source code has only intuition and experience
to guide him or her. Once a programmer does decide on
the presence of a concern, how does he or she identify the
full manifestation of that concern in all of the source code?
The purpose of this work is to help answer these questions.

We completed an exploratory study to discover how pro-
grammers think about concerns, how they identify them,
and how they link concerns to specific fragments of source
code. Our investigation involved two case studies in which
two programmers identified concerns and the code associ-

ated with them. In both case studies, we compared concern
code found by two investigators, levels of abstraction, and
concern spread in order to better understand the causes of
similarity (or lack thereof) in concern identification to gain
insight how different people come to similar conclusions
about concern identification.

There are several contributions of this work. The first
contribution is a classification of different types of con-
cerns. The second contribution is insights gained regard-
ing factors that contribute to consistent concern identifica-
tion. The third contribution is a set of guidelines that can
help programmers to more reliably and consistently iden-
tify concerns in existing source code.

In Section 2, we describe our two case studies. In Sec-
tion 3, we discuss what we learned from these studies. Sec-
tion 4 presents the guidelines we developed. Section 5 cov-
ers work related to ours, and Section 6 concludes.

2. Case Studies

In this section, we introduce Spotlight, the tool we used
to associate concerns with source code. We also describe
the two case studies that were the basis for developing our
concern definition and guidelines.

2.1. Spotlight

Figure 1 shows a screenshot of Spotlight, an Eclipse [2]
that we developed and used in both our case studies.
Spotlight allows the programmer to annotate fragments of
source code as belonging to a concern. We refer to this pro-
cess as tagging code with a concern. A fragment of code
may be annotated with more than one concern. To display
the annotations or taggings, Spotlight has a vertical ruler
on the left-hand side of the editor screen. As shown in
the figure, each concern that the programmer creates has
its own column and color in the “concern ruler.” Figure
1 also shows the context menu that is displayed when the
user selects a fragment of code and right-clicks on it. This
menu allows the user to easily edit the annotations for a
block of code. When a segment of code is annotated as
belonging to a particular concern, a vertical bar appears in
the corresponding column for the concern. The user can
also manage the ruler annotations by rearranging the order
of the concerns, or by associating multiple related concerns
with a single color. The user can also tell the tool to under-
line the particular characters in the code that are associated
with a concern.

2.2. Case Studies

Here we describe the two case studies we completed in
order to gain a more precise understanding of concerns and

£ Java - sort.ce - Eclipse Platform j ~=lol %]

Fle Edit Mavigate Search Project Run Spotight Window Help

I -EHes |3 -0-Q- |05 & & - 79 &svs (-Resaurce
|cm 5 |
e0ee
. &
static void -
xfclose (FILE 7fp) Undo Curlez
¢ Revett File
1t {(fp == stdin} e =1

Copy Plain Text

Cut Chrky
Copy Chrl+C
Paste Chrl+Yy

3 shift Right
else if (fp == stdc ShiftLeft
1

Save
if (fflush {fp)

{

Tag] 3
error (0, err TagSelected Lines »
_("flushing Untag Selected Code »
b
»

@ Error Handling
@Fi=

@ 5ToI i
@ sToouT 3

cleanup (): Un-tag Selected Lines

Source Tools
I Writable [rIreEr gl

Figure 1. In the Spotlight editor, the programmer
is using the context menu to annotate part of the
code with a concern.

their location in source code. We present the programs we
examined, discuss the concerns identified by two investi-
gators, and compare the concerns and their code. We will
provide a more in-depth analysis of the factors in concern
identification in Section 3. These case studies are inten-
tionally relatively small for several reasons. First, they are
preliminary work necessary for future, more in-depth stud-
ies. Second, the investigators exhaustively identified con-
cerns and associated code in the sample programs which is
a very time-consuming task.

2.2.1. GNU sort.c. The GNU textutils-1.22
implementation of sort is an approximately 2100-line C
program that sorts lines of input either from files or stan-
dard input. The resulting lines are written to standard out-
put by default or to a file if specified. Among other features,
sort will automatically use a temporary file if the output
file is also the input file. The command line flags of —c
and —m change sort’s mode of operation to check if the
given files are already sorted, or to merge the given files,
respectively. The user can specify one or more key fields
to control how input is sorted. The user can also provide
a number of global sort options, such as “phone directory
order” or to ignore non-printing characters. For this case
study, we compare concerns identified in sort by one of
the authors (Investigator M) to concerns found by Carver
and Griswold [1].

Investigator M identified 50 concerns in sort.c.
Many concerns were related to specific user-level features
such as specifying the output file, reversing the sort order,
and displaying help information. Other concerns were re-

lated to program characteristics such as the use of asser-
tions, buffers, temporary files, POSIX compliance, or sig-
nal handling. Investigator M was not very familiar with the
implementation language. She had used C previously but
not extensively and did not have much knowledge of the
standard libraries.

To better understand the subjective nature of program-
mer identification of concern code, we compared Investi-
gator M’s concerns to those of Carver and Griswold, who
used the same implementation of sort in their work. One
difference was in the number of concerns found—they had
83 concerns compared to Investigator M’s 50. The major-
ity of the additional concerns Carver and Griswold had re-
late to system-specific issues that Investigator M did not ad-
dress, such as access of the system environment space and
releasing the thread of execution to the operating system.
However, there were 23 commonly identified concerns be-
tween the two parties—mostly user-level features.

A second difference was the level of abstraction. Not
all of the concerns that only one programmer identified
were unrelated. For example, Carver and Griswold created
meta-concerns to group related concerns, and these meta-
concerns had no associated code. For example, Carver and
Griswold created a Modes concern to encompass sort’s
three modes of operation: sorting files, merging files, and
checking if files are already sorted. Investigator M had in-
dividual Sort, Merge, and Check concerns, but did and not
see the need to create a higher level concern such as Modes.
In contrast, in some cases Carver and Griswold used mul-
tiple concerns where Investigator M used a single concern.
They identified a Month Order concern that deals with sort-
ing dates by month and an Upper Month concern that trans-
lates month names to upper case letters. Investigator M had
only a Month Order concern which included the code for
converting month names to upper case, but she did not think
such a small feature warranted a concern because its total
associated code was only one line.

2.2.2. Minesweeper. For our second case study, we con-
sidered a Java implementation of the game Minesweeper
that is approximately 3000 lines contained in six classes.
One class controls the logic of the game, and the remaining
five deal with the graphical user interface. In this game, the
user is presented with a grid of cells, any one of which may
contain a “mine.” When the user selects a cell, either no
mine is present, a mine is present, or there is a digit indi-
cating the number of adjacent cells that contain mines. The
game ends when the user correctly identifies all of the cells
not containing mines or clicks on a cell containing a mine.
For this case study, two of the authors (Investigators M and
T) independently identified concerns in the Minesweeper
source code. Investigator M had over three years of expe-
rience using the implementation language and had previ-

ously written graphical user interfaces in Java. Investigator
T had over two years of experience with the implementa-
tion language but had never programmed graphical user in-
terfaces in Java.

For the results of the Minesweeper case study, we were
able do more analysis because the two investigators could
discuss their reasons for identifying and tagging concerns
in certain ways. Investigator M found 30 concerns while
Investigator T found 26 concerns. We compared both sets
of concerns and found 13 out of the total 43 concerns were
identified by both investigators.

Each investigator began by tagging the six Minesweeper
files: Game.java, MinesweeperWindow. java,
LED. java, CustomFieldDialog. java,
LEDPanel. java, and Cell. java. Investigator M ap-
proached the task of identifying concerns by beginning
in Game. java since this file deals with the logic of the
Minesweeper game. Investigator M’s strategy was to iden-
tify a concern in Game . java and then look for that con-
cern in the other five files. Investigator T began tagging
in Game . java, primarily because this is the longest file
the Minesweeper suite, and thus she expected it to yield
the most concerns. Investigator T identified all concerns in
Game . java and then proceeded to look for concerns in
each of the other files in succession, tagging an entire file
before moving on to the next. From these two experiences,
there appears to be a common starting point among pro-
grammers for concern identification but different methods
for examining the code. We cannot yet say whether con-
centrating on tagging all the concerns in individual files or
tagging all instances of a single concern across every file is
a more efficient approach for finding concerns.

Once an initial tagging of the code was complete, both
investigators felt the need to go back through the code to
ensure they had found all the fragments that belonged to
a concern. Investigator T searched for keywords to find
code related to a concern that she had missed during the
first pass of taggings. Investigator M reviewed her taggings
to see if she missed any concern code but did not use the
search functionality. Instead, she simply scrolled through
the code. This final step in the process of locating concerns
in code is important because the identification of a concern
may be easier in a later portion of the code but the program-
mer may not have recognized fragments that pertain to the
newly found concern in previously reviewed code.

3. Analysis of Identified Concerns and Code

In this section, we explore the concerns found in the
case studies and their associated source code in more depth.
We explain concern overlap, the metric we developed to
measure the similarity between code one programmer asso-
ciates with a certain concern to the code another program-

Table 1. Concern overlap in sort.
Char # Chars || Line # Lines

Concern Overlap | Tagged Overlap | Tagged
Assertions 42.26% 168 66.67% 6
Character Set 40.71% 737 48.94% 47
Check Only 90.08% 3985 93.60% 125
Phone Dir. Order 100.00% 378 100.00% 8
General Numeric 99.24% 1177 100.00% 45
Locale 100.00% 109 100.00% 4
Month Order 100.00% 1378 100.00% 66
Numeric Order 99.02% 4175 98.59% 213
Output File 90.64% 2222 83.33% 90
Large Files 0.00% 801 0.00% 27
POSIX 63.12% 5719 67.46% 169
Program Name 40.00% 310 66.67% 9
Race Condition 96.61% 1592 98.25% 57
Signals 100.00% 1400 100.00% 49
Solaris 100.00% 123 100.00% 4
Stable 100.00% 364 100.00% 10
LocalOptz 100.00% 646 100.00% 22
Field Separator 98.29% 819 94.29% 35
Temp Dir. 87.65% 834 88.46% 26
Usage Message 84.39% 2569 78.18% 55
Unique 86.22% 2504 79.07% 86
Version 86.67% 150 66.67% 3
Alt. EOL 93.19% 470 100.00% 14

mer associates with that same concern. We also discuss
how our case studies led us to the observation that pro-
grammers think about concerns on several different levels
of abstraction, and it is possible that one or more higher
level concerns subsume several lower level concerns. Fi-
nally, we explore several correlations with concern overlap.
The ultimate goal of these case studies was to gain insight
into the ways programmers think about concerns in order
to create guidelines on concern identification and how to
annotate associated source code.

3.1. Concern Overlap

Since we were interested how programmers associate a
concern with code, one of our colleagues implemented new
features in the Spotlight tool for us to use in our analysis of
concern code. These new features compute concern inter-
section and subtraction to aid us in comparing code tagged
as part of one set of concerns to code tagged with another
group of concerns. A concern group is a selection of con-
cerns that are related. For example, one programmer may
have an Event Listener concern while another programmer
has two concerns, one for Keyboard Events and another for
Mouse Events. The concern intersection or subtraction fea-

Table 2. Concern overlap in Minesweeper.

Char # Chars || Line # Lines
Concern Overlap | Tagged Overlap | Tagged
Cell State 79.87% 4769 85.92% 206
Debug 40.12% 2074 61.76% 68
Error Handling | 81.25% 1307 70.91% 55
Flag Cell 57.38% 1016 87.50% 64
Game Difficulty | 30.00% 10934 25.64% 472
Game State 34.86% 1486 60.00% 65
GUI 15.00% 23678 13.58% 1016
Graphics 35.98% 12657 26.29% 464
Images 52.96% 9659 51.64% 275
LED 45.80% 11542 51.64% 548
Menu 88.87% 2687 92.05% 88
Minefield 47.65% 11023 45.70% 442
Timer 78.87% 970 83.78% 37

tures allow a user to group the Keyboard Events and Mouse
Events concerns into a single concern group and compare
the combined taggings of both concerns to the annotated
code of the Event Listener concern.

These new Spotlight features perform a character-by-
character comparison of these concern groups to determine
either the concern intersection (the number of characters
tagged with a concern from each group) or the concern sub-
traction (the number of characters that one concern group
contains that the other does not). These features enabled us
to calculate the percent overlap of concern code tagged by
the investigators for two sets of concerns. To quantify this,
first let us define two variables. Let ¢ be the set of char-
acters tagged with the first concern group, and let ¢, be the
set of characters tagged with the second concern group. We
calculate the percent of concern overlap metric as follows:

n
concern_overlap(cy,cy) = ICIUCQ: %100 (1)
cirlUcer

In the sort case study, there were seven concerns with
100% overlap in what Investigator M and Carver and Gris-
wold tagged, as can been seen in the character overlap col-
umn of Table 1. The average concern overlap was 82.52%.
The overlap between concerns identified by the two investi-
gators in the Minesweeper case study was on average much
lower (52.93%) for the thirteen commonly identified con-
cerns shown in Table 2. The Minesweeper case study did
not yield any 100% concern overlaps, as the sort study
did. We believe there was more overlap in the sort case
study because sort is a more feature-oriented program,
and it is easier to identify code fragments that implement
each individual feature. We discuss some reasons for good
and poor concern overlap in Section 4.

In addition to investigating concern overlap for individ-
ual concerns, we also explored concern overlap for concern
groups. In the sort study, we were able to create 39 con-
cern groups. For example, we combined Carver and Gris-
wold’s Reverse Global and Reverse Key concerns to com-
pare them with Investigator M’s Reverse concern. 25 out
of the 39 concern groups had better than 80% overlap, with
an average of 78.34%. In the Minesweeper study, there
were 19 concern groups, and only three had an overlap bet-
ter than 80%, giving us further evidence that it is easier to
identify concern code in feature-rich programs like sort.

Realizing that the concern overlap metric could be
skewed by minor differences such as one investigator tag-
ging newlines and other whitespace while the other did not,
we also looked at line overlap. We consider a concern to be
present in a line if any portion of that line is tagged with
that concern. The percent overlap between lines was gen-
erally an improvement over the percent overlap between
characters in each case study, as shown in Tables 1 and
2. We attribute the cases where the line overlap was lower
than the character overlap to one investigator tagging blank
lines or lines of comments that other did not. For the rest
of the paper, we consider only character overlap.

3.2. Concern Abstraction

After we completed tagging for the two case studies, we
examined the two sets of concerns identified by both inves-
tigators in each study. We noticed that even though some
concerns had different names, they were related. For in-
stance, the Month Order and Upper Month example from
the sort case study above where all of the Upper Month
concern is included in the Month Order concern. We did
a similar analysis for all the concerns identified by con-
sidering all combinations of concerns and deciding which
were related and how. For the sort case study, our deci-
sion as to whether concerns were related was based on the
names of the concerns and reviewing the taggings. In the
Minesweeper case study, the two investigators were able to
discuss their concerns to determine the relationships.

We found we could map all of Investigator M’s con-
cerns to one or more of Carver and Griswold’s concerns
and all but seven of Carver and Griswold’s concerns to a
group that conceptually matched one or more of Investiga-
tor M’s concerns. We call this mapping of related groups
of concerns concern abstraction. The seven remaining, un-
mapped concerns of Carver and Griswold are either empty
meta-concerns (they have no associated code), are related
to system services which Investigator M did not consider
to be concerns, or in one case Carver and Griswold have a
concern comprised entirely of the comments at the top of
the file and Investigator M does not.

For more detailed examples of concern abstraction, we

turn to the Minesweeper study. In one example, Investiga-
tor T had a Mines concern, while Investigator M had five
concerns relating to mines: Neighbor Mines, Connected
Mines, Cell is mine, Exploded, and Mines cleared. We ob-
served that when combined, these five concerns of Investi-
gator M were equivalent to Investigator T’s Mines concern
and could conceptually be abstracted into a single concern.
We followed a similar procedure for all of the concerns and
created a concern abstraction hierarchy, shown in Figure 2.

Each object in Figure 2 represents a concern. The shape
of the object indicates whether Investigator M, Investigator
T, or both investigators identified the concern. A rectan-
gle means Investigator M identified the concern, an ellipse
means Investigator T found the concern, and a diamond
means both investigators included the concern. The num-
ber scale at the left of figure is the abstraction level of the
concern. We identified nine different levels of abstraction,
ranging from 1 to 9. Level 1 concerns are the lowest level
of abstraction. These concerns are very specific and easy
to identify in the source code. For example, all print state-
ments are tagged with the Stdout concern. At the opposite
end of the hierarchy, the GUI concern is placed at the high-
est level of abstraction with a ranking of 9. We assigned
numbers subjectively so that a higher ranking means that
the concern is broader and more vague.

If a concern has a line connecting it to concerns at a
lower level of abstraction, we say that the concern sub-
sumes those lower level concerns. This means that concep-
tually combining the lower level concerns should result in a
concern equivalent to the higher level one. For example, the
Game Difficulty concern found by both investigators sub-
sumes the Custom Game, Easy Game, Intermediate Game,
and Expert Game concerns found by Investigator M. These
concerns are all various levels of game difficulty, so their
union should be equivalent to the Game Difficulty concern.

As can be seen from the hierarchy, programmers think
about code on different levels. Investigator M tended to
be more detailed in her concern identification and think
at lower levels of abstraction than Investigator T. Interest-
ingly, there were some cases when an investigator would
think on more than one level about related concerns. Again,
take for example the Game Difficulty concern. Investigator
M identified it as well as the four lower level concerns for
the individual levels of play in the game. The four levels of
game difficulty are all significant on their own, but Investi-
gator M also recognized that they are relevant to the Game
Difficulty concern and annotated them as such.

3.3. Abstraction Level and Concern Overlap
There appears to be a correlation between the level of

abstraction of a concern in the hierarchy and the percent
overlap between two taggings, as shown in Figure 3. In

A
EBoihinvesLigato(s had this concem

__1- o= S o S S e e T e e e s el sl e e e o e e R o e Game
! window

i Only Investigator T had this concem

E Only Investigator M had this concern concem

Game
Difficuly

Intermadiate }»

|
@ - “ Custom
gama

Easy
| game | game

= Custom :
Mark lag | Meighbor Connected Cell is " | Mines | XY B R i | | Window
Call | Mines | mines mine | Ehianed cleared Location Eeinia Thieesd 3:;';2 size

Ewvent
: Gamea |Gusmm|
listener | — — — — LE>———————-- S>_ Menu - {5 cooiles

Figure 2. Hierarchy of concerns in the Minesweeper program.

general, the concerns with a higher ranking have lower con-
cern overlap. The best example is the GUI concern, which
is at the highest level of abstraction (9) and has the lowest
percent overlap of any concern (15.00%). We hypothesize
it is more difficult to determine the code associated with
these broad, high level concerns. Similarity, the concerns
at lower levels of abstraction tend to have higher percent
overlap. Error Handling is at level 1 and has 81.25% over-
lap and Cell State is at level 3 and has 79.32% overlap.

However, while there seems to be a general correlation,
the correlation seems to be weak. The Debug and Menu
concerns, for instance, seem to be outliers for a general
inverse correspondence between percent overlap and level
of abstraction.

3.4. Spread

Finally, we borrow Lai and Murphy’s spread metric [7],
replacing “feature f” in their definition with “concern c”

and “files” with “classes”

d(e) # of classes containing concern ¢ 2)
spread(c) =
P total # of classes

This metric is useful when used in conjunction with our
concern overlap metric because there is a correlation be-
tween the number of files that contain a concern and the
amount of overlap between commonly identified concerns.
In general, the greater the spread of a concern, the smaller
the percent overlap. For example, both Investigators M and
T had a Menu concern, and both tagged code for it in only
one of the Minesweeper files, giving spread (Menu) = .
The Menu concern has an 88.87% overlap in associated
code. In contrast, the Graphics concern had a spread of
%, and there was only a 35.9% overlap. Figure 4 summa-
rizes the correlation between the number of files in which
a concern is present and percent overlap.

As with abstraction, there seems to be a weak correla-
tion between spread and percent overlap. The percent over-

=]

Gul
‘15.00%

=]

=

Graphics
‘35.93%
Game State LED

. . WM enu
34.85% 45.80% SB_ST%’
Game Dificutty o llinciciiy o Images
30.00% 52.83%

47.65%

o

£n
I

Timner
* T8.ATY%

S

Cell State
70.32% ¢

[¥5]

Level of Abstractior

58]

Debug 4 Flag Cell
49_12%‘ E-?.BS%#

s

Error Handling
81.25% *

0 T T T T 1

0.00% 20.00% 40.00% 60.00% 80.00% 100.00%

Percent Overlap

Figure 3. Concern overlap vs. abstraction level for
concerns identified by both investigators.

lap of the Game State and Error Handling concerns, in par-
ticular, is not inversely proportional to the spread.

4. Generalizing the Case Studies

In this section, we discuss the insights gained from the
case studies mentioned above. We discuss factors we be-
lieve lead to agreement, or even disagreement, between
programmers when identifying concerns and associated
source code. We then present the types of concerns we
encountered in our case studies and the guidelines we de-
veloped.

4.1. Factors in Agreement Among Programmers

From our two case studies, we observed there are several
factors that possibly contribute to agreement disagreement
among programmers as to what constitutes a concern and
where one is located in source code. We list those factors
here in order of significance.

e Understanding of the program. We believe the extent
to which a programmer understands what a program is
doing and how it does it is the most important factor
that influences concern identification. In the sort case
study for instance, Investigator M lacks many of Carver
and Griswold’s concerns primarily because she had a
hard time comprehending how sort works in detail.
As a result, she missed some of the more fine-grained
concerns of Carver and Griswold.

e Knowledge of the programming language. Related to
understanding the program, another factor is knowledge

GuUl Graphics Images

15.00% 35.98% 52.93%
5 L L L
® E mor Handling
é Deb LED B2
gbug &
4 >
o a0.12% 45.80% hd
T
“ Game Dificulty ¢ o FlagCel
E 3000% YV W T %
2
Game State Winefield Cell State
2
g YT AT T
Z 1 Timer o o Menu
78.87% 28.87%
0 :
0.00% 20.00% 40.00% 50.00% 80.00% 100.00%

Percent Overlap

Figure 4. Concern overlap vs. number of classes for
concerns found by both investigators.

of the language in which the program is written. For
example in the Minesweeper case study, Investigator M
had previous experience with graphical user interfaces
in Java, but Investigator T did not. As a result, Inves-
tigator T did not know that classes such as Frame and
Canvas are GUI components and did not tag their uses
as such.

e Concern abstraction. The fact that programmers think
about concerns on different levels of abstraction means
it is not initially evident that two programmers have
found the same concern. By using concern abstraction,
we can discover the cases where we can map several
concerns from either programmer to a single concern.

e Same concern, different ideas. A factor that con-
tributes to disagreement between programmers is when
two programmers identify the same concern but have a
different idea of the meaning of that concern. For exam-
ple, both Investigator M and Investigator T had a Mine-
field concern in the Minesweeper study. However, there
was a low percentage (47.65%) of overlap between their
two taggings. Through discussion, we discovered that
Investigator M considered the Minefield concern to only
deal with data structures that represent the minefield in
the program. Investigator T included data structures and
elements of the graphical user interface that pertained to
the minefield in her Minefield concern.

e Program context. Another factor that we found to con-
tribute to disagreement among programmers was the
context of a fragment of code in the source. We can best
illustrate this point by example. In the Minesweeper
study, both investigators had a Flag Cell concern, but
they had conflicting views on how to tag the following
code fragment: if (currentCell.getState ()

Concern Identification Guidelines

1. Before you begin tagging, review the file, and look up any
unfamiliar constructs of the language.

2. Identify the main pieces of the program (features); they are
concerns.

3. Constants, user-defined types, class attributes and imported
classes are good indicators of concerns.

4. Entire functions usually relate to a concern or support a con-
cern (except for main).

5. When you create a concern, decide what it encompasses. For
example, if a program is created to check if the current date
corresponds to a birthday of someone stored in a database,
should a birthday concern encompass the Boolean value of
whether the current date is someone’s birthday, or should it
relate to the String value representing the date of the person’s
birthday.

6. Look for domain independent concerns such as debugging and
error handling.

Figure 5. Concern Identification Guidelines

!= Cell.STATE_FLAGGED). Investigator T tagged
the condition with the Flag Cell concern. However, In-
vestigator M did not tag the condition with the Flag Cell
concern because she thought since the condition was
checking that the cell was not flagged, this code frag-
ment should not be associated with a concern that deals
with flagging cells.

e Whitespace and comments. Minor differences such as
tagging or not tagging whitespace or comments can lead
to more or less concern overlap.

4.2. Types of Concerns

Using what we learned from the two case studies, we
developed a taxonomy of concern types in hopes of creat-
ing more consistent concern identification among program-
mers. We interpret a concern to belong to one or more of
the following categories.

e Feature. Something a user of the program would be
aware of.

e Domain Independent Unit of Functionality. An as-
pect of the code that could appear in any type of pro-
gram such as assertions, debugging, and error handling.

e Input/Output. Anything dealing with input to or output
from a program such as stdin, stdout, reading from or
writing to a file or stream, and input received from a
graphical user interface.

e Internal Program Characteristic. Something a user
of a program would not necessarily be aware of, such
as the use of buffers or temporaries, the steps taken to

Concern Tagging Guidelines

7. Different levels of concerns can be tagged in the same code
fragment.

8. Tangled concerns—even though a code fragment is tagged
with one concern, it can be tagged with another concern.

9. Use the search feature to find things, but take the time to figure
out the context of the code before tagging.

10. If a function is tagged with a concern, the calls to it should
also be tagged.

11. If the whole body of an if or switch statement is tagged,
tag the 1f or switch as well as the beginning and ending
braces.

12. If the whole body of a loop is tagged, tag the loop conditionals
as well as the beginning and ending braces.

13. Make sure to tag both the declaration and use of variables as-
sociated with a concern.

14. When a variable is an argument or parameter to a function, tag
only the argument or parameter and associated type.

15. Tag the whole line when it affects a concern variable. When
a concern variable is used on the right side of an assignment
statement, tag only the use of that variable.

16. Whitespace, new lines and comments should be included
when tagging concerns.

17. Most to all of the code in a file should be tagged.

Figure 6. Concern Tagging Guidelines

parse command line parameters, or optimizations im-
plemented for better performance.

e Language Characteristic. Elements of a program-
ming language such as constants, accessors, import-
ed/included classes or interfaces, and comments.

With a better idea of the types of concerns that exist in
source code, programmers should be able to more easily
identify them.

4.3. Guidelines

Next, we developed a set of guidelines that expound
upon how to identify concerns and their associated code.
Here we give some insight into how the individual guide-
lines, which are presented in Figures 5 and 6, were devel-
oped. The first six guidelines address identifying concerns
in a program. Many of the discrepancies between Investi-
gators M and T were due to the fact that Investigator T had
less experience with graphical user interfaces and thus was
not able to understand the program as well as Investigator
M. This supported the creation of Guideline 1. Guideline 2
was developed based on the common concerns of Investiga-
tors M and T, GUI, Game Difficulty, Minefield, Cell state,
Timer, LED, Menu, and Game state. All are feature-related
concerns and subsume most of the other concerns in the

hierarchy. Many of the differences between taggings, es-
pecially the higher level concerns, were due to inconsistent
identification. For example, take the GUI concern. In some
cases, GUI was used to tag an area of code, and in a subse-
quent area of similar code a concern GUI subsumes in the
hierarchy was used. This led to the creation of Guideline 5.
We added Guideline 6 as a reminder to look for concerns
that are not specifically tied to the functionality of the pro-
gram.

While the first six guidelines are meant to help program-
mers identify concerns, the final 11 guidelines can be used
to help programmers locate concern code. Guidelines 7-
17 were developed because in many cases an area of code
would be tagged with a similar or equivalent concern by
both investigators but the way in which the characters of
the code were tagged differed. Guideline 9 was spurred
by the fact that when Investigator T used the search tool
to identify concerns, the context of the instance was rarely
examined, leading to many taggings of simply an instance
of a variable that had little affect on the code or function in
which it was contained. To promote consistency in tagging,
and thus more potential overlap in concern identification,
Guidelines 10-16 were developed.

5. Related Work

Robillard and Murphy [13] extended the Eclipse plat-
form to include an algorithm to automatically infer con-
cern code from transcripts of the source code a program-
mer viewed while investigating a concern. Their tool for
locating concerns differs from ours in several ways. First,
the unit of granularity in their approach is a method dec-
laration, while with Spotlight we allow individual charac-
ters to be associated with a concern, so our approach is
much more fine-grained and gives us the accuracy needed
for our study. Second, their algorithm can only infer con-
cern code from an investigation transcript, which can lead
to false positives. Our manual approach to tagging concern
code gives the programmer complete control over the code
they wish to associate with a concern.

Robillard and Murphy [14] also developed a plug-in for
the Eclipse platform called Feature Analysis and Explo-
ration Tool (FEAT). A concern in FEAT is any fragment
of a program consisting of classes, methods, or fields of
interest to the programmer. FEAT allows the user to in-
teractively build concern graphs [12] by exploring program
structure and program element relationships and iteratively
expanding the body of code associated with a concern.
Their work is similar to ours in that they have tool support
to locate concern code, but their approach is automated.
However, it again lacks the granularity of our manual ap-
proach to finding concern code because FEAT only allows
the inclusion of classes, methods, and fields.

Information transparency [3] identifies scattered but re-
lated sections of code using inference and search mecha-
nisms. If a programmer needs to make a change to the
source code regarding a specific concern, he or she can
use information transparency to lexically (based on nam-
ing conventions) and syntactically (based on characteris-
tics such as loop structure) find the code pertaining to the
change to be made. Aspect mining [16] is a method of ad-
vanced separation of concerns that automatically identifies
cross-cutting concerns in software systems. Approaches
for finding code related to a concern can be text-based (i.e.
pattern matching) or type-based [4]. Information trans-
parency or aspect mining could have potentially reduced
the amount of time it took the investigators to locate and
annotate concern code in our case studies by reducing the
amount of code they had to consider.

Program slicing [18] attempts to reduce the complex-
ity of code by selecting only those lines of code that have
an effect on a particular variable. This approach could be
used to locate code associated with a concern, but the re-
sults would most likely be undesirable. Program slices can
be very large and include almost the entire program, while
most code associated with a single concern is a relatively
small fragment of the source code. Also, itis not always the
case that a program variable correlates to a single concern;
a variable may relate to multiple concerns in a program.

Lai and Murphy did an exploratory study to investigate
how different concerns interact [7]. They used a tool sim-
ilar to Spotlight called Feature Selector to mark and ana-
lyze concerns in Java source code. In their work, they state
some criteria for how they decided something was a feature
(their word for a concern). Their criteria included standards
conformation for the FTP and regular expression programs
they examined, input/output, and parts of the code a pro-
grammer might want to change or remove. Our work has
gone farther in this direction to explore other types of con-
cerns. They also remark that it was difficult to determine
what code to relate to a concern and how to be consistent.
Our work in developing guidelines can provide that needed
consistency.

6. Discussion and Future Work

In this paper, we have presented the results of two case
studies that provide some insight into how programmers
think about concerns and the factors that contribute to
consistent identification of concerns among programmers.
While there is no “right” or “wrong” way to identify con-
cerns and their associated code, we believe that the guide-
lines we have developed can ease the difficulty of identify-
ing concerns and improve their consistency. Clearly, exper-
imental validation of these guidelines is an important area
of future work.

Our results indicate that programmers think at differ-
ent levels of abstraction for different concerns. We hope
that our guidelines can help create some consistency in this
regard. With more agreement on what constitutes a con-
cern, programmers can potentially communicate more ef-
fectively because they will be thinking at the same or closer
levels of abstraction. However, it is clear that this is an in-
teresting issue that deserves further study.

The two case studies we have performed involve exist-
ing code that was unfamiliar to the programmers. Simi-
lar studies involving code developed by the programmers
identifying the concerns, or perhaps code that is undergo-
ing development, would complement the research we have
presented here. Clearly, the impact of code unfamiliarity
would be greatly reduced, and other unknown factors may
also arise.

The size of the case study systems is an obvious threat
to the validity of our study. One area of future work is
to repeat the experiments using larger systems, assuming
that one has the resources to exhaustively identify the code
associated with the concerns of the system.

Acknowledgments

We would like to thank Lee Carver and Bill Griswold
for making their GNU sort information available. We
thank Justin Manweiler for implementing the new features
in Spotlight we needed. We also thank the anonymous re-
viewers and Elisa Baniassad for their helpful comments.

References

[1] Lee Carver and William G. Griswold. Sorting out concerns.
In OOPSLA ’99 Workshop on Multi-Dimensional Separa-
tion of Concerns, November 1999.

[2] Eclipse.org. The Eclipse homepage. URL: http://www.
eclipse.org/.

[3] William G. Griswold. Coping with software change using
information transparency. In Proceedings of the 21st Inter-
national Conference on Software Engineering, May 1999.

[4] Jan Hannemann and Gregor Kiczales. Overcoming the
prevalent decomposition in legacy code. In ICSE 2001
Workshop on Advanced Separation of Concerns in Software
Engineering, 15 May 2001.

[5] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris
Maeda, Cristina Videira Lopes, Jean-Marc Loingtier, and
John Irwin. Aspect-oriented programming. In Proceedings
of the European Conference on Object-Oriented Program-
ming (ECOOP), Finland, June 1997. Springer-Verlag.

[6] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris
Maeda, Cristina Videira Lopes, Jean-Marc Loingtier, and

[7

—

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

John Irwin. Aspect-oriented programming. In ECOOP’97:

Proceedings of the European Conference on Object-
Oriented Programming, pages 220-42. Springer-Verlag, 9—

13 June 1997.

Albert Lai and Gail C. Murphy. The structure of features in
java code: An exploratory investigation. In OOPSLA 99
Workshop on Multi-Dimensional Separation of Concerns,
November 1999.

Gail C. Murphy, Albert Lai, Robert J. Walker, and Mar-
tin P. Robillard. Separating features in source code: An
exploratory study. In Proceedings of the 23rd Interna-
tional Conference on Software Engineering, pages 275-85,
Toronto, Canada, 12-19 May 2001. IEEE.

Bashar Nuseibeh, Jeff Kramer, and Anthony Finkelstein. A
framework for expressing the relationships between multi-
ple views in requirements specification. Software Engineer-
ing, 20(10):760-773, 1994.

H. Ossher and P. Tarr. Multi-dimensional separation of
concerns and the hyperspace approach. In Proceedings of
the Symposium on Software Architectures and Component
Technology: The State of the Art in Software Development.
Kluwer, 2000.

Martin P. Robillard. Representing Concerns in Source
Code. PhD thesis, University of British Columbia, Novem-
ber 2003.

Martin P. Robillard and Gail C. Murphy. Concern graphs:
Finding and describing concerns using structural program
dependencies. In Proceedings of the 24th International Con-
ference on Software Engineering, pages 406417, 19-25
May 2002.

Martin P. Robillard and Gail C. Murphy. Automatically in-
ferring concern code from program investigation activities.
In Proceedings of 18th International Conference on Auto-
mated Software Engineering, pages 225-234, 06-10 Octo-
ber 2003.

Martin P. Robillard and Gail C. Murphy. Feat a tool for lo-
cating, describing, and analyzing concerns in source code.
In Proceedings of the 25th International Conference on
Software Engineering, Portland, Oregon, 3—10 May 2003.
IEEE.

Jr. Stanley M. Sutton and Isabelle Rouvellou. Modeling of
software concerns in cosmos. In AOSD ’02: Proceedings of
the 1st international conference on Aspect-oriented software
development, pages 127-133. ACM Press, 2002.

Tom Tourwe and Kim Mens. Mining aspectual views us-
ing formal concept analysis. In Proceedings. Source Code
Analysis and Manipulation Workshop, September 2004.

C. Reid Turner, Alfonso Fuggetta, Luigi Lavazza, and
Alexander L. Wolf. Feature engineering. In Proceedings
of the 9th international workshop on software specification
and design, pages 162—-164, 1998.

Mark Weiser. Program slicing. /IEEE Transactions on Soft-
ware Engineering, SE-10(4):352-7, 1984.

